

Report on Geotechnical Investigation

Hospital Road North (Stage 2) Hospital Road, Randwick

Prepared for Lendlease Building Pty Ltd on behalf of Health Infrastructure

> Project 72505.20 February 2021

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	72505.20	Document No.	R.002.Rev2			
Document title	Report on Geotechnical Investigation					
	Hospital Road North	(Stage 2)				
Site address	Hospital Road, Rand	wick				
Report prepared for	Lendlease Building Pty Ltd on behalf of Health Infrastructure					
File name	72505.20.R.002.Rev	2				

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Peter Valenti	Peter Oitmaa	18 December 2020
Revision 1	Peter Valenti	Peter Oitmaa	20 January 2021
Revision 2	Peter Valenti	Peter Oitmaa	19 February 2021

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Health Infrastructure/Lendlease Building Pty Ltd/PwC
Revision 1	1	0	Health Infrastructure/Lendlease Building Pty Ltd/PwC
Revision 2	1	0	Health Infrastructure/Lendlease Building Pty Ltd/PwC

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Bter alert	19 February 2021
Reviewer Ala	19 February 2021

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introd	uction		1			
2.	Previo	ous Inve	stigations	1			
3.	Site D	escriptio	on	2			
4.	Regio	nal Geo	logy	4			
5.	Field \	Work Me	ethods	4			
6.	Field	Work Re	esults	6			
	6.1	Boreho	les	6			
	6.2	Groundwater					
		6.2.1	Groundwater Monitoring	6			
		6.2.2	Falling-Head Tests	7			
7.	Labor	atory Te	esting	8			
	7.1	Physica	al Soil Properties	8			
	7.2	Chemic	al Soil Properties	9			
	7.3	Rock S	trength Testing	10			
8.	Propo	sed Dev	/elopment	10			
9.	Comm	nents		10			
	9.1	Geolog	ical Model	10			
	9.2	Excava	tion Conditions	11			
		9.2.1	Groundwater and Dewatering	11			
		9.2.2	Disposal of Excavated Materials				
		9.2.3	Ground Vibrations				
	9.3		tion Support				
		9.3.1 9.3.2	Batter Slopes Retaining Wall Types				
		9.3.2	Retaining Wall Design				
		9.3.4	Ground Anchors				
		9.3.5	Excavation Induced Ground Movements (Stress Relief)				
	9.4	Survey	Monitoring During Excavation	18			
	9.5	Founda	itions	19			
		9.5.1	Site Classification	19			
		9.5.2	Footings	19			
	9.6	Soil Ag	gressivity	20			
	9.7	Seismic	c Design	20			
	9.8	Subgra	de Preparation	21			

Douglas Partners Geotechnics | Environment | Groundwater

	9.9	Pavements				
		9.9.1	General	21		
		9.9.2	Pavement Thickness	22		
		9.9.3	Drainage	23		
	9.10	Storm	water Management Systems	23		
	9.11	Workir	ng Platforms	24		
	9.12	Dilapic	dation Surveys	24		
10.	Refer	rences		24		
11.	Limitations					

Appendices

Appendix A:	About this Report
Appendix B:	Drawings 1 to 3
Appendix C:	Results of Previous Investigations
Appendix D:	Results of Current Investigation
Appendix E:	Results of Laboratory Testing – Physical Properties
Appendix F:	Results of Laboratory Testing – Chemical Properties
Appendix G:	Groundwater Well Logs
Appendix H:	Results of Groundwater Monitoring
Appendix I:	Results of Permeability Tests

Report on Geotechnical Investigation Hospital Road North (Stage 2) Hospital Road, Randwick

1. Introduction

This report presents the results of a geotechnical investigation undertaken for the proposed Hospital Road North (Stage 2) at Hospital Road, Randwick. The investigation was commissioned by Lendlease Building Pty Ltd (LLB) on behalf of Health Infrastructure (HI). This report was undertaken in accordance with Douglas Partners' proposal SYD200742.P.002.Rev0 dated 23 November 2020.

The investigation was carried out in consultation with LLB, PricewaterhouseCoopers (PwC) the project managers for HI, the structural engineers Bonacci Group Pty Ltd (Bonacci) and the civil engineers Acor Consultants Pty Ltd (Acor).

It is understood that the proposed Hospital Road North (Stage 2) development includes services diversions, installation of shoring piles and lowering of Hospital Road by up to about 10 m at the northern (High Street) end, with the excavation depth reducing towards the south.

The works detailed above on Hospital Road are pivotal in allowing for the development of an interlinked campus and removing the interface between pedestrians and vehicles to provide for a safe and interconnected campus link.

The investigation included a desktop review of previous boreholes, in situ permeability tests and laboratory data in proximity to the site from investigations for the Randwick Campus Redevelopment (RCR) Acute Services Building (ASB) Stage 1, together with the drilling of eight boreholes on and near the site (where access was readily available to drilling rigs) to fill in data gaps, installation of four groundwater monitoring wells to monitor the groundwater levels, permeability tests in soil and rock, and laboratory tests for geotechnical purposes.

Details of the field work methods and results are provided in this report, together with comments on geotechnical issues for planning and design of the proposed Hospital Road North (Stage 2). It is understood that this report will be used to support the Review of Environmental Factors (REF) for the proposed Hospital Road REF works.

The geotechnical investigation was conducted in conjunction with a detailed site (contamination) investigation (DSI), the results for which are reported separately (refer to DP Report 72505.22.R.002). DP has also prepared a Remediation Action Plan (RAP) for this site (refer to report 72505.22.R.003).

2. **Previous Investigations**

DP previously carried out a number of geotechnical investigations within the Randwick Hospital Campus to the east of Hospital Road (Ref: DP Project 85461.00, dated 8 August 2016), the University of New

South Wales (UNSW) Kensington Campus to the west of Botany Street (Ref: DP Projects 71543.00, dated 19 March 2010 and 73492.00, dated 28 June 2013), and most recently within the RCR site as part of the ASB and HRL Stage 1 (Ref: DP Project 72505.11, dated 8 February 2018 and 72505.13, dated 2018 to 2019).

The approximate locations of the previous boreholes of relevance to the subject development are shown on Drawing 1 in Appendix B. The results of previous boreholes including photographs of rock core samples are provided in Appendix C, and are also included in interpreted geotechnical cross sections in Appendix B.

The subsurface conditions encountered in previous investigations can generally be summarised as sandy and ripped sandstone fill to depths of between 1 m and 3 m, underlain by loose and medium dense sand, then Hawkesbury Sandstone including about 1 - 2 m of variable strength/weathered rock underlain by more consistent medium strength sandstone with some high strength bands.

South of the subject site, low strength siltstone and laminite bands were encountered in boreholes BH2 and BH8 at about RL 40 m and RL 43 m.

At the Wallace Wurth Building within UNSW, approximately 90 m west of the subject site, an igneous dyke in BH2 and BH3 included highly variable strength material, ranging from clay-like and very low strength, extremely weathered rock to very high strength, fresh stained rock. The sandstone rock near the dyke was typically highly fractured and fractured. The dyke is expected to strike east – south-east, and may extend across Botany Street into the north-western corner of the RCR where the proposed HTH site is located. The inferred strike of the two dykes is shown on Drawing 1 in Appendix B. It is noted that this dyke has not been encountered in more recent boreholes located on the eastern side of Botany Street within the larger RCR site.

Groundwater was generally measured near the soil and rock interface and less than 1 m above the top of rock in some boreholes.

Plasticity tests on the fill indicate that it is of low plasticity, with test results on natural sand indicating it is non-plastic. Particle size distribution tests on sand indicate that it is mostly of fine to medium grain size with either 0%, with trace of (0-5%), or with some (5-12%) silt or clay content (i.e. fines <0.075 mm diameter).

For tests located upslope of the proposed Sydney Children's Hospital Stage 1 and Children's Comprehensive Cancer Centre (SCH 1 / CCCC) southern site boundary, permeability testing within sand gave a permeability ranging between 1.1×10^{-5} and 4.1×10^{-7} m/s (for tests in BH12, BH13 and BH16). Permeability testing within rock gave a permeability of 1.7×10^{-7} m/s in BH4 and 1.1×10^{-6} m/s in BH17.

3. Site Description

The proposed Hospital Road North (Stage 2) site is located approximately 6 km from the Sydney Central Business District (CBD), within the Randwick Local Government Area (LGA) and the Randwick Health and Education Precinct (RHEP). The RHEP includes the Randwick Hospital Campus (RHC), which is home to the SCH, Prince of Wales Hospital (POWH), the Royal Hospital for Women (RHW), the Prince

of Wales Private Hospital (POWPH), UNSW Kensington Campus and several other medical research institutes including the Children's Cancer Institute (CCI). The site includes a rectangular area within Hospital Road of approximately 8 m by 122 m, and the SCH 1 / CCCC northern shoring wall area that continues about 64 m further west along High Street. Both areas are located in the north-eastern corner of the larger RCR redevelopment site.

At the time of the investigation, Hospital Road was an asphaltic concrete pavement with some on-street car parking. Hospital Road provides access to Delivery Drive and is currently accessed by vehicles and pedestrians from Magill Street to the south and High Street to the north. The ground surface along Hospital Road undulates between about RL 55 m and RL 57 m relative to Australian Height Datum (AHD).

Drawing 1 in Appendix B includes an aerial photograph of the site and surrounding area, taken on 2 August 2020. The site location and the general site topography are shown in Figure 1 below.

The site is bordered by High Street with South East Light Rail infrastructure followed by residential properties to the north, the ASB Stage 1 site currently under construction to the south, the Hospital Precinct with multi-storey buildings to the east and the proposed SCH 1 / CCCC followed by the proposed UNSW Health Translation Hub (HTH) site and Botany Street to the west.

In terms of nearby basements, it is understood that the ASB basement Level -02 is at about RL 47.0 m and was constructed as a drained basement with an anchored contiguous pile shoring wall. The proposed SCH 1 / CCCC basement includes Level -02 at RL 46.8 m to RL 47.5 m and Loading Dock at the northern end at RL 45.8 m. The proposed HTH basement level that will be located west of the SCH 1 / CCCC will be about RL 50.2 m.

Figure 1: Site Location and Topography with 2 m Contours

4. Regional Geology

Reference to the Sydney 1:100 000 Series Geological Sheet indicates that the site is underlain by fine to medium grained sand (shown in yellow in Figure 2). Hawkesbury Sandstone comprising medium to coarse grained quartz sandstone with minor shale and laminite bands (shown in green in Figure 2) is present in areas to the north-east, south-east and south-west of the site. The current investigation confirmed the presence of sand and Hawkesbury Sandstone.

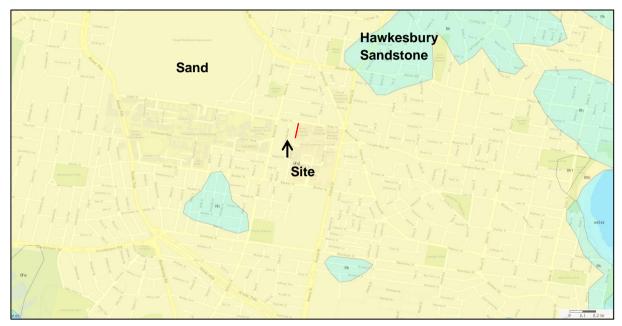


Figure 2: Regional Geology (Source: Sydney 1:100 000 Series Geological Sheet)

The site is located well beyond the mapped extent of potential saline soil areas shown in the NSW Salinity Potential Western Sydney map prepared by the former Department of Infrastructure Planning and Natural Resources (2002). Therefore, a soil salinity assessment and a soil salinity management plan are considered to be unnecessary for this development.

The Acid Sulfate Soils Map (Sheet ASS_007) sourced from the Randwick Local Environment Plan 2012 indicates that the site is located in an area which is not known to have acid sulfate soils. Therefore, an acid sulfate soils assessment and an acid sulfate soils management plan are considered to be unnecessary for this development.

5. Field Work Methods

The current investigation included:

- Scanning for Services:
 - Scanning for services using a ground penetrating radar and an electromagnetic scanner to set out all boreholes a safe distance away from underground services with the aid of Dial-Before-You-Dig (DBYD) service plans and a services plan provided by the client.

- Pot-Holing:
 - The five boreholes (BH601 to BH605) within Hospital Road were firstly cored through the pavement and then pot-holed using non-destructive drilling (NDD) methods (i.e. vacuum) and with a hand auger to confirm that the borehole locations were unaffected by buried services.
- Drilling of Boreholes:
 - Eight boreholes (BH601 to BH608) were drilled with a bobcat-mounted drilling rig near the locations nominated by the structural engineers (Bonacci), to fill in the data-gaps across the site. The borehole locations were positioned where accessible to the drill rig, to avoid underground services and to minimise disruption to site activities;
 - The boreholes were drilled through soil to the top of weathered rock using solid flight auger and rotary/washbore drilling (i.e. with circulating drilling fluid) techniques;
 - Standard penetration tests (SPTs) were undertaken below the depths of NDD or hand augering at approximate 1.5 m depth intervals to assess the strength of the soils/weathered rock and to collect samples for tactile assessment and laboratory testing;
 - Observation of any groundwater whilst augering the boreholes;
 - Six out of the eight boreholes were continued into the rock to depths of between 16.0 m and 17.6 m using diamond core drilling techniques to recover 50 mm diameter (NMLC-size) rock core samples for logging and strength testing;
 - Colour photographs were taken of the rock core samples, followed by point load (axial) strength tests at approximately 1 m depth intervals to assess the unconfined compressive strength (UCS) of the rock; and
 - Logging of the boreholes and co-ordination of the field work by a geotechnical engineer.
- Groundwater Monitoring Wells:
 - Two groundwater monitoring wells were installed (within BH602 and BH606) to allow groundwater monitoring and permeability testing within the sand profile.

Two groundwater monitoring wells were installed (within BH605 and BH608) to allow groundwater monitoring and permeability testing within the rock profile.

- Wells included 50 mm diameter, machine-slotted polyvinyl chloride (PVC) pipes over the subsurface section of interest;
- Data loggers were installed within the four new wells to measure the groundwater level throughout the investigation period and for on-going, longer term monitoring; and
- The groundwater levels recorded by data loggers within previous wells at BH12 and BH13 were downloaded to supplement current groundwater data.
- Permeability Testing:
 - Falling-head or rising permeability tests were undertaken within the four new wells using water data-loggers. The permeability tests within BH602 and BH606 targeted the soil permeability and tests within BH605 and BH608 targeted the rock permeability.
- Surveying:
 - The ground surface levels at the borehole locations were measured using a high-precision global positioning system (GPS). Horizontal positions are relative to the Map Grid of Australia 1994 (MGA94), Zone 56 datum. Vertical positions are relative to AHD. The accuracy of the vertical and horizontal measurements is typically better than 0.1 m.

The locations of the boreholes are shown on Drawing 1 in Appendix B.

6. Field Work Results

6.1 Boreholes

Details of the subsurface conditions encountered in the current boreholes BH601 to BH608, together with photographs of the rock cores and notes defining classification methods and descriptive terms, are provided in Appendix D.

The subsurface profile encountered in boreholes BH601 to BH608 is summarised as follows:

- PAVEMENT: A 40 110 mm thick asphaltic concrete surfacing underlain by roadbase gravel to less than 0.5 m depth;
- FILL: Gravelly sand, silty sand, sand and gravel (crushed sandstone) fill to depths of between 0.6 m and 1.6 m;
- NATURAL SAND AND CLAY (AEOLIAN and RESIDUAL): Loose and medium dense sand and clayey sand to depths of between 1.6 m and 4.0 m. Sandy clay or extremely weathered sandstone was encountered in BH605 at a depth of 2.5 – 3.2 m. Apparently cemented, iron-indurated sand known locally as "coffee rock" was encountered in BH602 at 2.2 – 2.6 m; and
- HAWKESBURY SANDSTONE: The top of rock was encountered below levels of between RL 48.7 m and RL 52.5 m, about 1.7 m to 4 m below the ground surface. The upper rock profile included variably extremely low to medium strength sandstone. More consistent medium and high strength sandstone was encountered below levels ranging between RL 46.2 m and RL 50.7 m, except in BH602 and BH604, which were discontinued in weathered rock.

The rock discontinuities are predominantly along bedding planes dipping between 0° and 20° below the horizontal or decomposed seams, with the occasional rock joint dipping between 30° and 60°.

Some core loss occurred in the boreholes, possibly indicating decomposed seams or very low strength rock.

6.2 Groundwater

6.2.1 Groundwater Monitoring

Groundwater seepage was measured near the soil and rock interface in BH601, BH603 and BH605 at depths of 3.95 m, 1.8 m and 3.1 m, respectively. No groundwater was observed during auger drilling in the other five boreholes. The use of water for rotary/washbore drilling and rock coring purposes precluded any further observation of groundwater.

The results of the measured groundwater levels within boreholes drilled during the previous investigation period are provided in Table 1, with the top of rock depths/levels provided for comparison. In all previous boreholes, the groundwater levels were measured at or below the top or rock level.

Bore	Groundwater During Drilling	Ground	Approximate Depth (& RL)			
	Approximate Depth (& RL) (m (& m AHD))	Date	Approximate Depth (& RL) (m (& m AHD))	Date	Approximate Depth (& RL) (m (& m AHD))	to Top of Rock (m (& m AHD))
BH4	Dry	10.5.18	3.6 (48.3)	17.5.18	3.7 (48.2)	3.5 (48.4)
BH7	Dry	13.10.17	5.1 (49.5)	17.5.18	Not Accessed	3.9 (50.7)
BH8	Dry	10.5.18	Dry	17.5.18	Not Accessed	2.6 (47.9)
BH12	Dry	10.5.18	6.3 (49.4)	17.5.18	6.1 (49.6)	6.1 (49.6)
BH13	Dry	10.5.18	Dry	17.5.18	3.5 (48.5)	3.2 (48.8)
BH16	Dry	10.5.18	4.2 (51.0)	17.5.18	4.1 (51.1)	4.1 (51.1)
BH17	Dry	10.5.18	5.1 (50.1)	17.5.18	5.0 (50.2)	4.4 (50.8)

Table 1: Summary of Tape-Measured Groundwater Levels and Rock Levels

The results of the groundwater levels measured by electronic data-loggers in current groundwater wells at BH602, BH605, BH606 and BH608, and in previously installed wells at BH12 and BH13 over a longer monitoring period are provided in Appendix H. The well construction details are provided in the respective well logs in Appendix G.

The results are plotted against rainfall data from a nearby weather station located at Randwick Street, Randwick (Station No. 66052, operated by the Bureau of Meteorology). Labels are shown at the respective time on the graphs where the data-loggers were manually handled for tests during the monitoring period (i.e. to identify false readings).

At BH12 and BH13, the groundwater levels measured between 1 December 2019 and 8 September 2020 rise following heavy rainfall events and slowly fall towards original levels within the rock and above the proposed Hospital Road Lowering Stage 2 and SCH 1 / CCCC basement level.

At BH602, BH605, BH606 and BH608, the groundwater levels measured between 29 August 2020 and 21 September 2020 were close to or below the top of rock, and above the proposed Hospital Road Lowering Stage 2 and the proposed SCH 1 / CCCC basement level.

6.2.2 Falling-Head Tests

The detailed results of the in situ falling or rising head tests within previous and current groundwater wells are provided in Appendix I and are summarised in Table 2.

	Hydraulic Conductivity (m/s)						
Well Location	Sa	and	Sandstone				
Location	Test 1	Test 2	Test 1	Test 2			
BH602	4.7 x 10 ⁻⁵	-	-	-			
BH605	-	-	5.9 x 10 ⁻⁸	-			
BH606	3.8 x 10 ⁻⁵	-	-	-			
BH608	-	-	1.2 x 10 ⁻⁷	-			
BH4	-	-	1.7 x 10 ⁻⁷	1.7 x 10 ⁻⁷			
BH8	8.9 x 10 ⁻⁷	Inaccessible	-	-			
BH12	3.0 x 10 ⁻⁷	3.2 x 10 ⁻⁷	-	-			
BH13	8.7 x 10 ⁻⁶	1.1 x 10⁻⁵	-	-			
BH16	2.1 x 10 ⁻⁷	4.1 x 10 ⁻⁷	-	-			
BH17	-	-	1.1 x 10 ⁻⁶	1.2 x 10 ⁻⁶			

Table 2: Results of Permeability Tests

7. Laboratory Testing

7.1 Physical Soil Properties

The detailed laboratory test results of the physical properties are included in Appendix E.

Selected soil samples were tested in DP's National Association of Testing Authorities (NATA) accredited laboratory to assess a range of physical properties including the field moisture content, soil plasticity, California bearing ratio (CBR), maximum dry density and optimum moisture content at Standard compaction. The laboratory test results for previous and current boreholes are summarised in Table 3.

Borehole	Depth (m)	Material	W _F (%)	₩ _P (%)	W∟ (%)	РІ (%)	CBR (%)	MDD (t/m³)	OMC (%)
BH601	2.0 - 3.8	Sand	6.5	-	-	-	15	1.67	12.0
BH605	0.4 – 1.0	Fill/Gravelly Sand, Sand	13.9	-	-	-	25	1.76	13.5
BH603	1.4 – 1.5	Clayey Sand	17.2	17	20	3	-	-	-
BH605	2.0 – 2.45	Clayey Sand	18.4	15	21	6	-	-	-
BH607	1.9 – 2.0	Clayey Sand	17.8	16	19	3	-	-	-
BH2	0.3 – 0.4	Sand Fill	7.3	NO	NO	NP	-	-	-

 Table 3: Laboratory Results of Physical Soil Properties

	Borehole	Depth (m)	Material	W _F (%)	₩ _P (%)	W∟ (%)	РІ (%)	CBR (%)	MDD (t/m³)	ОМС (%)
	BH3	0.4 – 0.5	Sand Fill	4.5	NO	NO	NP	-	-	-
	BH4	2.5 – 2.95	Sand	4.9	NO	NO	NP	-	-	-
	BH4	H4 0.75 – 1.3 Sand Fill with some Sandstone Gravel		4.9	-	-	-	25	1.68	12.5
Ν	otes: W _F = F	ield Moisture Co	ontent W _P = Plastic L	W _P = Plastic Limit				$W_L = Liquid Limit$		
	PI = PI	CBR = Califor	CBR = California Bearing Ratio							
	MDD =	Density NO = Not Obs	NO = Not Observed				NP = Non-Plastic			

Three particle size distribution (PSD) tests were also carried out in DP's laboratory on natural soil samples from BH606, BH607 and BH608 to assess the soil grading and to allow the estimation of the soil permeability using empirical methods. The results of the PSD tests indicate that the natural soil is fine to medium grained sand, with (5 - 12%) or a trace (0 - 5%) of silt or clay content. An estimate of the sand permeability using empirical methods is described in Section 9.2.1.1 of this report.

7.2 Chemical Soil Properties

Four soil samples from the current 600 series boreholes were tested at an external NATA-accredited laboratory to assess the soil aggressivity (pH, chloride, sulphate content and electrical conductivity) to buried concrete and steel elements. The detailed laboratory test results of chemical properties are included in Appendix F and are summarised in Table 4, together with the results of tests from previous boreholes nearby.

Borehole	Depth (m)	Material	рН	Chloride (mg/kg)	Sulphate (mg/kg)	Electrical Conductivity (µS/cm)
BH601	3.5 - 3.6	Sand	6.5	<10	20	31
BH605	2.5 - 2.6	Sandy Clay	5.1	<10	32	27
BH606	2.5 - 2.95	Sand	6.9	<10	29	27
BH607	2.5 - 2.95	Clayey Sand	6.1	<10	42	35
BH2	4.0 - 4.45	Sand	8.5	<10	10	20
BH3	1.3 – 1.4	Sand	8.0	<10	28	41
BH4	2.5 – 2.95	Sand	7.7	<10	22	20
BH8	2.5 – 2.66	Sand/Weathered Sandstone	11.6	<10	66	730
BH13	3.0 – 3.2	Sand	5.4	<10	<10	12

 Table 4: Summary of Laboratory Chemical Soil Analysis

7.3 Rock Strength Testing

Selected samples of the rock core were tested to determine the Point Load Strength Index (Is_{50}) values for classification of the rock strength. The test results are shown on the borehole logs at the appropriate depths. The $Is_{(50)}$ values for the tested rock cores ranged from less than 0.1 MPa to 2.2 MPa, corresponding to a rock classification from very low to high strength. The unconfined compressive strength (UCS) of the rock is inferred to range between about 1 MPa and 40 MPa using a typical correlation ratio of 20:1 for UCS: $Is_{(50)}$ in Hawkesbury Sandstone.

8. Proposed Development

It is understood that the proposed Hospital Road North (Stage 2) development includes:

- Diversion of existing services;
- Piling for shoring walls north-south on Hospital Road and east-west along the High Street boundary;
- Excavation of Hospital Road North to depths up to about 10 m at the northern end and reducing in height towards the south. The lowered Hospital Road will slope from about RL 51.0 m at the southern end down to RL 45.8 m at the northern end.

Directly west of the proposed Hospital Road lowering, the SCH 1 / CCCC project is also proposed and this includes a multi-storey building with basement Level -02 at RL 46.8 m to RL 47.5 m and Loading Dock at the northern end at RL 45.8 m.

9. Comments

9.1 Geological Model

A summary of the subsurface conditions encountered across the site is shown in two geotechnical crosssections A - A' and B - B' in Drawings 2 and 3 in Appendix B, with the proposed levels for Hospital Road lowering and proposed SCH 1 / CCCC basement Level -02 also shown indicatively.

Pavement materials are expected along Hospital Road and the former Eurimbla Avenue. In other areas of the site, the subsurface conditions are expected to include sandy and crushed sandstone fill to depths of between 1 m and 2 m, underlain by loose and medium dense sand and clayey sand, then Hawkesbury Sandstone including about 1 - 2 m of variable strength/weathered rock underlain by consistent medium strength sandstone with some high strength bands. The rock surface undulates across the site, although generally dips down towards the south and west in some areas.

The Hawkesbury Sandstone is generally cut by two main sets of steeply dipping joints trending north – north-east and east – south-east. These main sets of rock joints are likely to be near-parallel to excavation faces for the proposed basement and road excavations.

The igneous dykes encountered at the Wallace Wurth Building within UNSW, approximately 90 m west of the subject site, were not intersected in any of the current boreholes or in the previous boreholes located within the RCR site (i.e. east of Botany Street).

Based on the site topography, published mapping and subsurface conditions encountered to date, acid sulfate soils and saline soils are unlikely to be geotechnical issues at this site.

Based on measurements of groundwater within previous and current boreholes and monitoring wells, groundwater seepage is expected near the soil and rock interface and within rock along joints and extremely/highly weathered rock bands. The groundwater seepage levels are above the proposed Hospital Road level and basement Level -02. Beyond the Hospital Road North site, a water table is expected within the sand profile over rock at the southern, lower-lying end of the adjacent ASB site (i.e. near Magill Street).

The groundwater seepage levels should be expected to fluctuate with variations in climatic conditions. For design, based on groundwater monitoring data to date and DP's experience in the area, the groundwater seepage level may periodically rise by up to 1 m (and possibly more) over the rock surface, following extended periods of rainfall. Groundwater is expected to flow downslope over the rock surface, generally towards the south and west.

9.2 Excavation Conditions

The Hospital Road excavation is likely to intersect pavements, fill, natural sand and Hawkesbury Sandstone of variable strength. Excavation of soil and very low strength rock should be readily achieved using conventional earthmoving equipment, such as tracked excavators with bucket attachments. Removal of low strength and stronger rock will require relatively large excavators fitted with hydraulic rock hammers and/or rotary rock saws. Excavation of existing pavements is also likely to require similar plant and equipment. For productive excavation of low strength and stronger rock within large areas, ripping of rock with large dozers could be considered.

9.2.1 Groundwater and Dewatering

Based on the groundwater data available to date, groundwater seepage is expected near the soil and rock interface, and within rock along rock joints and extremely/highly weathered rock bands, all of which lie above the proposed Hospital Road levels and future basement levels.

A tanked basement comprising water-tight walls and floors would eliminate the requirement for permanent dewatering and approval from regulatory authorities for permanent dewatering and disposal of groundwater off-site. Alternatively, a drained basement is also considered to be suitable but would require approval from regulatory authorities.

For a drained basement, any immediate lowering of groundwater seepage levels through weep holes/spitter pipes within basement walls is expected to be within local historical fluctuations. The proposed development levels are also above the water table located further south of the site, and consequently, there is no requirement to lower the water table. Therefore, the effect of drawdown (i.e. additional soil stresses causing vertical settlement of the ground surface and nearby structures) is not expected to be an issue with dewatering for a drained basement.

Dewatering during excavation for the basement should be able to be managed through sump and pump techniques.

9.2.1.1 Groundwater Ingress

Based on the results of three particle size distribution tests on natural sand and using Hazen's equation to predict the soil permeability or hydraulic conductivity (k), the sand has an average 'k' value in the order of 2.3×10^{-4} m/s to 5.6×10^{-5} m/s.

Based on the results of the of nine falling-head tests in natural sand, the sand has a 'k' value in the order of 4.7×10^{-5} m/s to 2.1×10^{-7} m/s.

These 'k' values represent a soil of medium to high permeability, and within the typical range of permeability for fine to medium grained sand with varying inclusions of silt and clay. It is noted that the hydraulic conductivity of sandy soil is highly dependent upon the grain size, the soil density, the amount of silt and clay content (i.e. fine particles less than 0.075 mm diameter) and the degree of saturation over the full depth of the sand profile, and for these reasons will vary across the site.

The permeability of rock depends on the primary permeability of the rock, which considers the rock mass, and the secondary permeability of the rock, which is governed by the frequency and aperture (i.e. tightness, open or tight) of the rock joints and discontinuities. Based on the results of six in situ falling head tests within rock, the rock has a 'k' value in the order of 1.2×10^{-6} m/s to 5.9×10^{-8} m/s. If open rock joints are intersected then the secondary permeability of the rock would be expected to be greater than the estimate provided. The permeability of the rock can be more accurately measured during the excavation stage of construction.

Based on the current information on groundwater monitoring, rainfall data, rock contours, and permeability testing at this site, groundwater inflow to the Hospital Road excavation is estimated to be in the order of 9,000 - 10,000 L/day, or about 3.3 - 3.7 ML/year. This estimate of groundwater considers that the excavation for the proposed Hospital Road and the adjacent proposed SCH 1 / CCCC basement will occur at the same time. If the Hospital Road excavation occurs first and independently to the adjacent SCH 1 / CCCC basement excavation, with a shoring wall extending along the western side of Hospital Road, then the groundwater inflow to the Hospital Road excavation is estimated to be in the order of 18,000 L/day, or about 6.6 ML/year. Detailed modelling should be undertaken to refine this estimate, if required.

The volume of groundwater ingress will ultimately depend on the soil permeability, rock fracturing, the amount of ground surface infiltration compared to surface run-off, and prevailing weather conditions. Greater volumes of groundwater ingress to the basement may also be experienced if leaking stormwater systems are present in the surrounding sandy soils or heavy continuous rainfall is experienced. Consideration should be given to whether a dewatering licence from a regulatory authority is required for this site.

A drainage blanket including a free-draining, single-sized (typically 20 mm) durable crushed rock should be constructed below the Hospital Road pavement. The thickness of the drainage blanket (typically 100 - 150 mm thick) will ultimately depend on the granular material adopted, and should be designed by the civil or hydraulic engineers. By way of example, a 100 mm thick drainage blanket should be appropriate for the estimated rate of groundwater ingress to the basement. This assumes the use of a free-draining granular material with a permeability of 1 x 10^{-2} m/s.

9.2.1.2 Disposal of Groundwater

The potential to dewater and dispose groundwater off-site into Randwick City Council's (Council) stormwater system will depend on the contamination status of the groundwater and other groundwater properties.

In the absence of Council criteria for disposal of groundwater to the local stormwater system, DP proposes the following stormwater quality assessment criteria from Australian and New Zealand guidelines for fresh and marine water quality, Australian and New Zealand Conservation Council & Agriculture, and Resource Management Council of Australia and New Zealand (ANZECC/ARMCANZ (2000):

- Conductivity (µs/cm) 125-2200;
- pH 6.5-8.5;
- Dissolved Oxygen (% saturation) 85-110;
- Turbidity (NTU) <50; and
- Suspended solids (mg/L) <40.

Laboratory testing on groundwater for the purpose of disposal off-site was not part of the current scope, and this should be completed with further soil/groundwater contamination assessments and/or during construction directly from the holding tank or sump.

Reference should be made to the contamination assessment reports by DP for further advice and recommendations in relation to the contamination status of groundwater and any remedial works.

9.2.2 Disposal of Excavated Materials

All excavated materials will need to be disposed of in accordance with the provisions of the current legislation and guidelines including "Waste Classification Guidelines" – 2014, New South Wales Environment Protection Authority (NSW EPA). This includes fill and natural materials that may be removed from the site.

Reference should be made to DP's DSI Contamination Report (DP Project 72505.22.R.002) for guidance on the off-site disposal of excavated materials.

9.2.3 Ground Vibrations

Vibrations may be induced by a large number of site activities, including demolition of existing pavements or buried structures, excavation, driving sheet piles, piling and compaction works. Hence, particular care to avoid damaging adjacent buildings or structures will be required.

The level of acceptable vibration is site-specific and is dependent on various factors including the type of building structure (e.g. reinforced concrete, brick, etc.), its structural condition, the frequency range of vibrations produced by the construction equipment, the natural frequency of the building and the vibration transmitting medium.

The Australian Standard AS 2187.2 - 1993 "Explosives Code" recommends a maximum peak particle velocity (PPV) of 10 mm/s to avoid architectural damage to houses and low-rise residential or commercial buildings. Ground vibration arising from excavation plant is of a continuous nature, as opposed to transient nature such as with blasting events. More stringent vibration limits should generally apply for excavation plant than for blasting.

It is suggested that vector sum peak particle velocity (VSPPV) be initially limited to 8 mm/s at the foundation level of adjacent buildings for this site. The presence of medical equipment within existing facilities may warrant more stringent vibration limits for their operation. Utility and light rail owners or operators may also request a specific vibration limit to protect their asset.

It should also be noted that human perception of vibrations is much greater than that of buildings and consequently vibration levels considered insignificant for buildings may disturb humans.

Vibration trials should occur at the commencement of excavation in rock to determine minimum setbacks from existing buildings or sensitive areas for specific plant, whether the use of other plant or continuous vibration monitoring is required.

9.3 Excavation Support

9.3.1 Batter Slopes

Vertical excavations in fill and natural sand are not expected to be stable for any extended period of time. Therefore, both temporary and permanent shoring support will be required for proposed excavations.

Where there is sufficient space, maximum temporary and permanent batters of 1.5H:1V and 2H:1V, respectively, are suggested for cuts less than 3 m high in fill and natural sand above groundwater, and where not subjected to surcharge loads. If vegetation and maintenance of permanent batters is proposed, a flatter permanent batter of 3H:1V is suggested. Erosion control should also be provided for permanent batters and this may simply include a layer of geofabric covered by grass.

Excavations in consistent medium and high strength sandstone can be cut vertically and remain unsupported provided there are no adversely oriented joints, faults or other defects in the rock mass.

During construction of the and service trenches, any exposed excavation faces should be inspected at regular 1.5 m depth intervals by an experienced geotechnical engineer to assess whether there are any further stabilisation requirements, such as reducing the steepness of a batter, installation of ground anchors or shotcrete protection.

9.3.2 Retaining Wall Types

Due to the presence of sand, groundwater seepage near the soil and rock interface and possibly rising groundwater seepage levels above rock during extended wet periods, a secant pile shoring wall comprising interlocking Continuous Flight Auger (CFA) piles or CFA piles with jet grouted columns in between piles is recommended as this shoring system can generally provide an effective seal to minimise sand loss and water inflow from behind the wall, and if adequately supported, minimise lateral

deflections. A secant pile shoring wall can be designed as a tanked or drained basement and can be incorporated into the vertical load carrying footing system.

Alternatively, a contiguous pile wall, with the gaps between the piles plugged with dry-pack grout or reinforced shotcrete during excavation to retain soil, together with a drainage plenum around the site perimeter for collection and subsequent discharge of groundwater is also considered to be a feasible retaining system. It is recommended that weep holes/spitter pipes covered with a filter fabric on their back-end be installed at regular vertical and horizontal spacing through the plugged gaps in the contiguous pile wall to prevent the build-up of hydrostatic pressure behind the wall. A contiguous pile shoring wall can be designed as a drained basement and can be incorporated into the vertical load carrying footing system provided the pile toes extend below the excavation level.

It will be necessary to ensure that gaps between contiguous piles are generally limited to less than 50 mm to minimise the risk of sand loss from behind the wall. Some groundwater ingress between piles should also be expected during construction. Any gaps between the contiguous piles should be progressively plugged as the excavation proceeds (at every 1.5 m depth of excavation) to prevent such sand loss. The gaps in between the piles are typically filled with dry-packed grout, however, shotcrete or grout injection may be required to provide greater support.

The shoring piles can be terminated in consistent medium strength (or stronger) rock above the excavation level, and this would most likely require lateral restraint of the pile toe using steel beams and ground anchors. Mapping of the rock cutting below the shoring piles at 1.5 m deep drops in excavation is required to determine if any additional stabilisation is required.

Given the presence of sands over rock, together with the proximity of adjacent structures, light rail and utilities, particular care will be required by the piling contractor to avoid "decompression" of the upper sands. Decompression involves the drilling auger drawing in the surrounding soils, usually due to a sudden decrease in the rate of penetration relative to auger rotation. Decompression can lead to settlement of the ground surface and damage to existing structures founded within sand. For this and other reasons, only experienced piling contractors with suitable high-powered drilling rigs should be considered for this project.

For temporary support of localised excavations such as service trenches, sheet pile walls or steel trench boxes may be appropriate, provided no vibration or movement sensitive structures are located in close proximity to the excavation.

9.3.3 Retaining Wall Design

The recommended bulk density and earth pressure coefficients for the design of cantilevered walls or walls with one row of ground anchors are provided in Table 5. Active earth pressure coefficients (K_a) may be used where some wall movement is acceptable. "At rest" earth pressure coefficients (K_o) should be used where wall movement is to be minimised such as close to structures, or where the wall is propped or braced prior to excavation. A triangular lateral earth pressure distribution could be adopted for cantilevered walls or walls with one row of anchors.

Material	Active Earth Pressure Coefficient (K _a)		At Rest Earth Pressure Coefficient	Bulk Unit Weight
Material	Short Term / Temporary	Long Term / Permanent	(K _o)	γ (kN/m ³)
Fill / Sand	0.3	0.4	0.5	20
Variable Very Low to Low Strength Sandstone	0.1	0.15	0.2	22
Medium Strength (or stronger) Sandstone	0	0	0	24

Table 5: Earth Pressure Coefficients and Bulk Unit Weights

The above earth pressure coefficients assume a level ground surface behind the top of the wall. Additional allowances should be made for the effects of building or structure surcharge loads on the wall, as well as any short-term surcharges such as construction plant or vehicles operating behind the top of the wall.

Where more than one row of temporary anchors is used, it is recommended that the shoring design is based on a rectangular earth pressure distribution. Where there are no movement sensitive structures or services in close proximity to the excavation, the maximum pressure (kPa) could be calculated using 4H (where H equals the depth (m) to the excavation level or to the top of medium strength sandstone, whichever is shallower). Where the wall movement is to be minimised, the maximum pressure could be calculated using 6H.

Passive lateral resistance for piles embedded below the base of the excavation may be based on an ultimate passive lateral pressure provided in Table 6. A factor of safety of at least two must be applied to the ultimate values to limit wall movement that is required to mobilise the full passive resistance. Passive resistance should be assumed to start at least 0.5 m below excavation level due to disturbance and fracturing of the rock and toe drains.

Material	Ultimate Passive Lateral Coefficient and Pressures
Sand	K _p = 3
Very Low Strength Sandstone	400 kPa
Low to Medium Strength (or Stronger) Sandstone	2000 kPa

Table 6: Ultimate Passive Lateral Coefficient/Pressures for Embedded Retaining Wall Piles

If a water-tight retaining wall system is used to provide a tanked basement without drainage or relief measures, the retaining walls should be designed for full hydrostatic pressures.

Detailed design of shoring should preferably be carried out using WALLAP, FLAC or other computer analysis programs capable of modelling the proposed excavation and anchoring sequence and potential movements of the wall.

9.3.4 Ground Anchors

Temporary ground anchors may be required to restrict wall movements during the construction phase, with permanent support of retaining walls anticipated to be provided by the final structure.

Ground anchors are typically inclined at about 10° below the horizontal, have a free length equal to or greater than the height of the anchor above the base of the excavation and have a minimum free length of 3 m. A minimum bond length of 3 m should also be used.

For anchors in sands, the bond length design is dependent upon the overburden soil pressure, which depends upon the depth of the anchor below ground and the unit weight of the soil. The design of temporary ground anchors bonded into natural sand below at least 2 m depth may be carried out using an allowable bond stress of 25 kPa at the grout-sand interface. Secondary-grouted anchors could be used in the natural sand to increase the anchor capacity. This technique involves installing a conventionally-grouted anchor and then, once cured, injecting grout into the anchor at a higher pressure to crack the primary grout and densify the surrounding materials. This technique is specialised, and only experienced contractors should be engaged for the design and installation of secondary-grouted anchors.

For ground anchors within rock, the bond length can be designed on the basis of the maximum allowable bond stresses provided in Table 7.

Material	Allowable Working Bond Stress
Very Low to Low Strength Sandstone	150 kPa
Medium Strength Sandstone	500 kPa
High Strength Sandstone	1000 kPa

Table 7: Maximum Allowable Bond Stresses for Ground Anchors

After installation, anchors should be proof stressed to 125% of their nominal working load and lockedoff no higher than 85% of the Working Load. Periodic checks should also be carried out throughout the construction phase to ensure that the lock-off load is maintained and not lost due to creep effects or other causes. Proof stressing should also be carried out at intervals after installation to ensure that the load is maintained in the anchors and not lost due to creep effects.

The parameters given above for ground anchors in sand and rock assume that anchor holes are clean, with grouting and other installation procedures carried out carefully and in accordance with normal ground anchoring practice.

Where vertical anchors are required, anchor design should also consider cone pull-out failure mechanism within the surrounding rock.

If ground anchors extend into adjacent properties then permission from the property owners for their installation will be required.

It is anticipated that the building will restrain the basement excavation over the long term and therefore ground anchors are expected to be temporary only. The use of permanent anchors, if required, would

generally need careful attention to corrosion protection. Further advice on design and specification should be sought if permanent anchors are to be employed at this site.

9.3.5 Excavation Induced Ground Movements (Stress Relief)

Locked in stresses are present in rock. During excavation, these stresses will be released, which will result in lateral movement, typically along existing sub-horizontal bedding planes. These lateral movements may cause cracking of adjacent buildings and services founding in rock and may also cause increases in the loads on any anchors used to provide lateral restraint to the shoring walls.

For excavations within medium strength (or stronger) rock, some stress relief movement of medium strength (or stronger) rock in exposed cut faces should be expected. This would occur in excavations where shoring piles are terminated above the excavation level and where deep service trenches extend below the excavation level and are adjacent to perimeter shoring piles. Any re-entrant corners within the perimeter of the excavation are likely to move more than the straight sides of the excavation. The top mid-section of each excavation face is likely to move inwards in the order of 0.5 mm to 1.0 mm per metre depth of excavation within medium strength (or stronger) rock. The amount of stress relief is also related to the length of the excavation. Most of the stress-relief movement is expected to be complete once the excavation level has been reached.

At the ground surface, this movement is expected to reduce away from the excavation at an initial rate of 0.5 mm/m to 1 mm/m, possibly giving rise to some differential strain and possible cracking of structures founded on rock in the near vicinity of the excavation.

9.4 Survey Monitoring During Excavation

The use of instrumentation to monitor existing adjacent roads/footpaths, buildings and structure movements will be important for this development as the existing structures are likely to be sensitive to differential foundation movement.

Precise survey points should be established on existing roads, buildings and structures adjacent to the proposed basement as well as along the shoring wall capping beam, prior to the commencement of any excavation works. Monitoring should be undertaken to an accuracy of at least ± 1 mm and should be continued throughout the construction phase until excavation faces are permanently supported by the new building structure.

Survey readings must be taken prior to commencement of any excavation works to provide baseline readings. The frequency of survey monitoring should be at every 1.5 m drop in excavation or at least weekly.

A "trigger" or alarm level appropriate for the shoring system and based on expected movement, should be adopted for survey monitoring of existing buildings and the proposed shoring wall. A monitoring plan should be developed that includes trigger levels, hold points and actions by responsible parties, at which time the builder would be obliged to seek further advice from structural and geotechnical engineers.

9.5 Foundations

9.5.1 Site Classification

Based on the depth of sandy fill within some of the boreholes, the site has a site classification of 'Class P' in accordance with AS 2870 - 2011 "Residential slabs and footings". Design of footings for Class P sites should be based on engineering principles. Provided all footings are designed to be founded beneath the fill on natural medium dense sand or rock, a 'Class A' site classification would be appropriate.

9.5.2 Footings

If the shoring wall piles are also used for building foundation piles, the design of pile footings socketed below the basement excavation level may be based on the design parameters provided in Table 8.

Material Description	Allowable Pressure (kPa)		Ultimate Pressure ⁽³⁾ (kPa)		Young's Modulus
Material Description	End Bearing	Shaft Adhesion ^(1,2)	End Bearing	Shaft Adhesion ^(1,2)	E (MPa)
Very Low to Low Strength Sandstone	-	100	-	250	-
Medium Strength (or stronger) Sandstone	3500	300	20,000	800	500

Table 8: Design Parameters for Footings

Notes:

1. Shaft adhesion applies only for the design of rock socketed piles of adequate sidewall roughness.

2. Where piles are also required to resist uplift, it is suggested that the shaft adhesion values be reduced by 50%.

3. Ultimate values occur at large settlements, typically >5% of the minimum footing dimension.

For the design of pile footings, an appropriate geotechnical strength reduction factor ($Ø_g$) should be selected using the procedure outlined in AS 2159 – 2009 "Piling design and installation" if using the limit-state design approach. The calculation of $Ø_g$ should be carried out by the pile designer given the variables for various design and testing procedures.

Footings founded at a high-level above a 45° zone of influence line extending up from the base of any adjacent excavation or retaining wall should be designed using a reduced allowable end bearing pressure of 1,000 kPa for consistent medium strength sandstone, with the adjacent excavation face inspected by a geotechnical engineer for any adverse rock joints that may require the footing to be founded at a deeper level or stabilisation of the rock face to be undertaken. Such a case may exist near the steps in the basement floor levels.

The settlement of footings is dependent upon the foundation conditions and applied loads and may be estimated using the elastic (Young's) modulus given in Table 8. For footings bearing in rock, the settlement of footings is expected to be about 1% of the minimum footing dimension when using allowable (working) pressures.

The foundation design parameters in Table 8 assume that the foundation excavations are clean and free of loose debris, with pile sockets (i.e. shafts) free of smear and adequately roughened prior to concrete placement.

Beyond the Hospital Road excavation and the future basement excavation, any lightly-loaded structures may be supported on shallow, pad or strip footings bearing on loose to medium dense sand. The design of shallow footings founded in sand is dependent upon the size of the footing, the depth of footing embedment, the friction angle of the founding material as well as the depth to the water table.

By way of example, a 0.5 m by 0.5 m pad footing or a 0.5 m wide strip footing, embedded 1 m deep, founded in loose to medium dense sand, with a water table at least twice the minimum footing width below the base of the footing, may be designed for a maximum allowable bearing pressure of 250 kPa. Reduced bearing pressures will apply in cases where footings are founded close to the water table. Therefore, targeted investigations of subsurface conditions are recommended where shallow footings in sand are proposed. The settlement of a footing bearing in sand is dependent upon several factors and should be confirmed to be within the tolerance of the structure.

All foundation excavations should be inspected by an experienced geotechnical professional prior to pouring of concrete to confirm that the material is suitable for the design parameters adopted. It is noted that CFA piles are a proprietary product that involves a 'blind' drilling technique and therefore the piling contractor should certify the installation of CFA piles.

9.6 Soil Aggressivity

Based on the results of the chemical analysis and with reference to Tables 6.4.2(C) and 6.5.2(C) of AS 2159 - 2009 "Piling design and installation", the samples tested from previous and current boreholes have a 'non-aggressive' exposure classification with respect to buried concrete, except the samples from BH605/2.5 - 2.6 m and BH13/3.0 - 3.2 m that have a 'mild' exposure classification due to their pH levels.

For buried steel elements, the samples tested have a 'non-aggressive' exposure classification, except one sample of weathered sandstone from BH8/2.5 – 2.66 m that has a 'mild' exposure classification based on its electrical conductivity. All classifications consider the presence of 'Soil Conditions B' (i.e. all soils above groundwater).

9.7 Seismic Design

In accordance with AS 1170 - 2007 "Structural Design Actions, Part 4: Earthquake Actions in Australia" a hazard factor (Z) of 0.08 and a site subsoil Class C_e (shallow soil site) is considered to be appropriate for the site.

If all of the building footings are socketed into the medium strength (or stronger) rock then it may be permissible to treat the site as a Class B_e (rock) site. However, the seismic impact of the soils above the rock on the retaining walls must be considered in this case. Pad footings must be embedded entirely within medium strength rock to provide lateral resistance to deformation under cyclic loading.

9.8 Subgrade Preparation

From a geotechnical perspective, the existing fill and natural sand are likely to be suitable for re-use as engineered fill on site provided oversize material (i.e. particles greater than 100 mm) and any deleterious material is removed. The suitability of re-using site-won fill and natural soil should also be considered from a contamination perspective (refer to DP's DSI contamination report).

Subgrade preparation measures for pavements or slabs on grade should include:

- Removal of any fill to a maximum depth of 0.6 m below design subgrade level or to the top of natural soil or rock, whichever is shallower;
- Proof roll the exposed surface using a minimum 12-tonne roller in non-vibration mode. The subgrade should be rolled a minimum of six times with the last two passes observed by an experienced geotechnical engineer to detect any soft spots. Any loose/soft areas identified during proof rolling should be removed as directed by the geotechnical engineer;
- Placement of engineered fill in loose layer thicknesses of 200 300 mm (dependent upon compaction equipment used) and compact to a minimum dry density ratio of 98% (for slabs on grade) and 100% for pavements relative to Standard compaction and with moisture contents maintained within 2% of Standard optimum moisture content. New fill should be free of oversize particles (>100 mm) and deleterious material. The use of a readily compacted material such as medium to high strength ripped sandstone or dense graded basecourse (DGB) material would generally be appropriate. Such materials are likely to have a CBR value greater than 8%; and
- Density testing in accordance with AS 3798 2007 "Guidelines for earthworks for commercial and residential developments" should be undertaken to verify the above compaction criteria is achieved.

For areas where rock is exposed beneath slabs and pavements, which is likely to be the case for most of Hospital Road, the loading dock and basement Level -02, the upper 0.3 m of rock should be ripped and re-compacted to a density ratio as outlined above or alternatively left in-situ with a drainage layer constructed between the rock and pavement materials. Any loose rock from the excavation process should be removed.

9.9 Pavements

9.9.1 General

It is understood that the proposed road lowering of Hospital Road North (Stage 2) will slope down from about RL 51.0 m at the southern end to RL 45.8 m (i.e. loading dock level) at the northern end. As per Hospital Road Stage 1, an asphaltic concrete (i.e. flexible) pavement may be adopted along the straight section and a concrete (rigid) pavement at entrances to the car park and loading dock, where the pavement is subjected to shearing forces from turning vehicles.

It is anticipated that the excavation levels for the pavement will expose sand (less than 1 m deep over rock) at the southern end, grading to weathered sandstone then medium and high strength sandstone towards to the north (refer to Drawing 2 in Appendix B).

The CBR tests indicated that the sand and sand fill with gravel had a CBR of 8% and 25%, respectively. The higher CBR for the sandy fill is most likely attributed to the gravel inclusions in the samples tested.

Subject to the subgrade preparation outlined in Section 9.8, the design of pavements on sandy subgrade or on re-worked rock may be based on a CBR value of 8%. If the pavement is constructed directly on medium strength rock with a drainage layer between the rock and pavement with a CBR equal to the rock, then a design CBR of 30% may be used. These CBR values assume all pavements are protected by adequate surface and subsoil drainage to minimise the risk of water infiltration and softening of pavement materials.

Control joints should be provided in rigid concrete slabs at the soil and rock interface to reduce the effects of differential movement and possible cracking of the slabs at these locations.

Based on a CBR value of 8% for sand and provided subgrade preparation is carried out in accordance with Section 9.8, a Young's elastic modulus of 30 MPa for short term loading and 25 MPa for long term loading is appropriate for pavement design in accordance with "Industrial Floors and Pavements" 1999.

9.9.2 Pavement Thickness

Preliminary pavement thickness design for three pavement options was undertaken using "Austroads" 2012 and 2017, an equivalent standard axle (ESA) traffic loading of 5 x 10⁵ provided by Acor, and a 95% project reliability as used for Hospital Road lowering Stage 1.

Presumptive parameters that were adopted for the analysis are outlined in Table 9.

Layer	Material	Minimum Compaction
AC layer	E≥3000 MPa	Dependant on mix design
Base (Flexible Pavements)	DGB20, CBR ≥ 80%	Minimum dry density ratio of 98% (Modified) compaction
Sub-Base (Flexible Pavements)	DGB40, CBR ≥ 30%	Minimum dry density ratio of 95% (Modified) compaction
Subgrade	Sand, Soaked CBR≥ 8 %	Site preparation as per Section 9.8 of this report.
Subgrade replacement (if required)	Soaked CBR ≥ 8%; Granular	Minimum dry density ratio of 100% (Standard) compaction or 80% density index

Table 9: Material Properties for Pavement Thickness

The materials used for construction should meet the requirements in Table 9, or allowance made for further analysis based on the actual materials used. All granular pavement materials should meet the criteria outlined in the NSW Roads and Maritime Services (RMS) Specification 3051. All pavement materials and associated construction and drainage works should also meet the requirements of Austroads 2017.

It is noted that long term pavement performance is often dictated by construction stage works, and therefore, careful attention should be made to adopting appropriate construction processes, including quality controls, inspections and testing, to ensure that the subgrade is suitably prepared, and pavement is constructed in accordance with all requirements.

The analysis indicates the pavement design thicknesses given in Tables 10 to 12 are appropriate.

Material	Minimum Thickness (mm)
AC layer	40
Base, unbound granular	125
Sub-base	175
Total pavement thickness	340

Table 10: Pavement Thickness (Option 1 – Unbound Pavement)

Table 11: Pavement Thickness (Option 2 – Deep Lift Asphaltic Concrete Pavement)

Material	Minimum Thickness (mm)
AC layer	125
Base, unbound granular	200
Total pavement thickness	325

Table 12: Pavement Thickness (Option 3 – Rigid, Jointed Reinforced Concrete Pavement)

Material	Minimum Thickness (mm)
Base, concrete (f $_{\rm c}$ = 32 MPa) with steel mesh reinforcement	180
Sub-base, cemented (≥ 5%) bound granular	150
Total pavement thickness	330

9.9.3 Drainage

Water within the pavement and upper subgrade materials will reduce pavement performance, and allowance must be made for appropriate surface and subsurface drainage to maintain and protect the pavement and subgrade, in order to achieve the pavement design life.

It is recommended that the subsurface drain should generally extend to at least 0.5 m below subgrade level on both sides of the road pavement. Such drainage could potentially be integrated with other drainage works, such as bedding for stormwater lines.

If a final AC layer is not placed immediately following pavement construction, it is suggested that diversion mounds and appropriate temporary drainage measures be provided to prevent excessive water flows running into the pavement (as may occur where the 'lip' of permanent kerbing and drainage measures acts as a dam to water movement). Such infiltration may result in premature pot-holing and pavement failure.

9.10 Stormwater Management Systems

9.11 Working Platforms

Working platforms are likely to be required where heavy loads such as from large piling rigs or outrigger cranes are used during construction. Such platforms will require a site-specific geotechnical assessment for the proposed plant, and typically require the use of additional layers of durable, high strength crushed rock or similar.

9.12 Dilapidation Surveys

It is recommended that dilapidation (building condition) reports be prepared for adjacent structures and infrastructure located within about 15 m from the site boundaries, prior to commencing excavation work on the site. Dilapidation reports are undertaken to document any existing defects, so that any potential claims for damage from third parties can be accurately assessed.

10. References

- Department of Mineral Resources, Geological Survey of New South Wales, "Geology of the Sydney 1:100,000 Sheet 9130", 1983;
- 2. Randwick Local Environment Plan 2012, Acid Sulfate Soils Map (Sheet ASS_007);
- 3. NSW Environment Protection Authority, "Waste Classification Guidelines" 2014;
- 4. Standards Australia, AS 2187.2 1993 "Explosives Storage, Transport and Use";
- 5. Standards Australia, AS 2870 2011 "Residential Slabs and Footings";
- 6. Standards Australia, AS 2159 2009 "Piling Design and Installation";
- 7. Standards Australia, AS 1170 2007 "Structural Design Actions, Part 4: Earthquake Actions in Australia";
- 8. Standards Australia, AS 3798 2007 "Guidelines on Earthworks for Commercial and Residential Developments";
- 9. Cement and Concrete Association of Australia, "Industrial Floors and Pavements" Second Edition 1999;
- 10. Austroads Ltd, "Guide to Pavement Technology Part 2: Pavement Structural Design" 2012 and 2017;
- ANZECC & ARMCANZ 2000, National water quality management strategy. Australian and New Zealand guidelines for fresh and marine water quality, Australian and New Zealand Conservation Council & Agriculture, and Resource Management Council of Australia and New Zealand (ANZECC 2000);

- 12. Pells, P.J., Mostyn, G. and Walker, B.F. "Foundations on Sandstone and Shale in the Sydney Region". Australian Geomechanics Journal, Vol. No. 33 Part 3, Dec. 1998;
- Pells, P.J., Douglas, D.J., B., Thorne, C. and McMahon, B.K. "Design Loadings for Foundations on Shale and Sandstone in the Sydney Region". Australian Geomechanics Journal, Vol. 3, 1978; and
- 14. Walker, B.F. and Pells, P.J.N. "The Construction of Bored Piles Socketed into Shale and Sandstone". Australian Geomechanics Journal, Vol. No. 33 Part 3, Dec. 1998.

11. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at the corner of Hospital Road and High Street, Randwick in accordance with DP's proposals (SYD200742. P.002.Rev0 dated 23 November 2020) and acceptance received from PricewaterhouseCoopers (Variation Notice, dated 1 December 2020) on behalf of Health Infrastructure and Lendlease Building Pty Ltd. The work was carried out as a variation under a professional services agreement with Health Infrastructure (Contract No. HI17299). This report is provided for the exclusive use of Health Infrastructure for this project only and for the purposes as described in the report. It should not be used for other projects or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it

should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report.

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

man olaye er ena		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example			
	of coarser				
	fraction				
And	Specify	Sand (60%) and			
		Gravel (40%)			
Adjective	>30%	Gravelly Sand			
With	15 - 30%	Sand with gravel			
Trace	0 - 15%	Sand with trace			
		gravel			

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW of	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test
- V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

Bedding plane
Clay seam
Cleavage
Crushed zone
Decomposed seam
Fault
Joint
Lamination
Parting
Sheared Zone
Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

ari

sv sub-vertical

Coating or Infilling Term

clean
coating
healed
infilled
stained
tight
veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

A. A. A. Z	

Asphalt Road base

Concrete

Filling

Soils

Topsoil Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

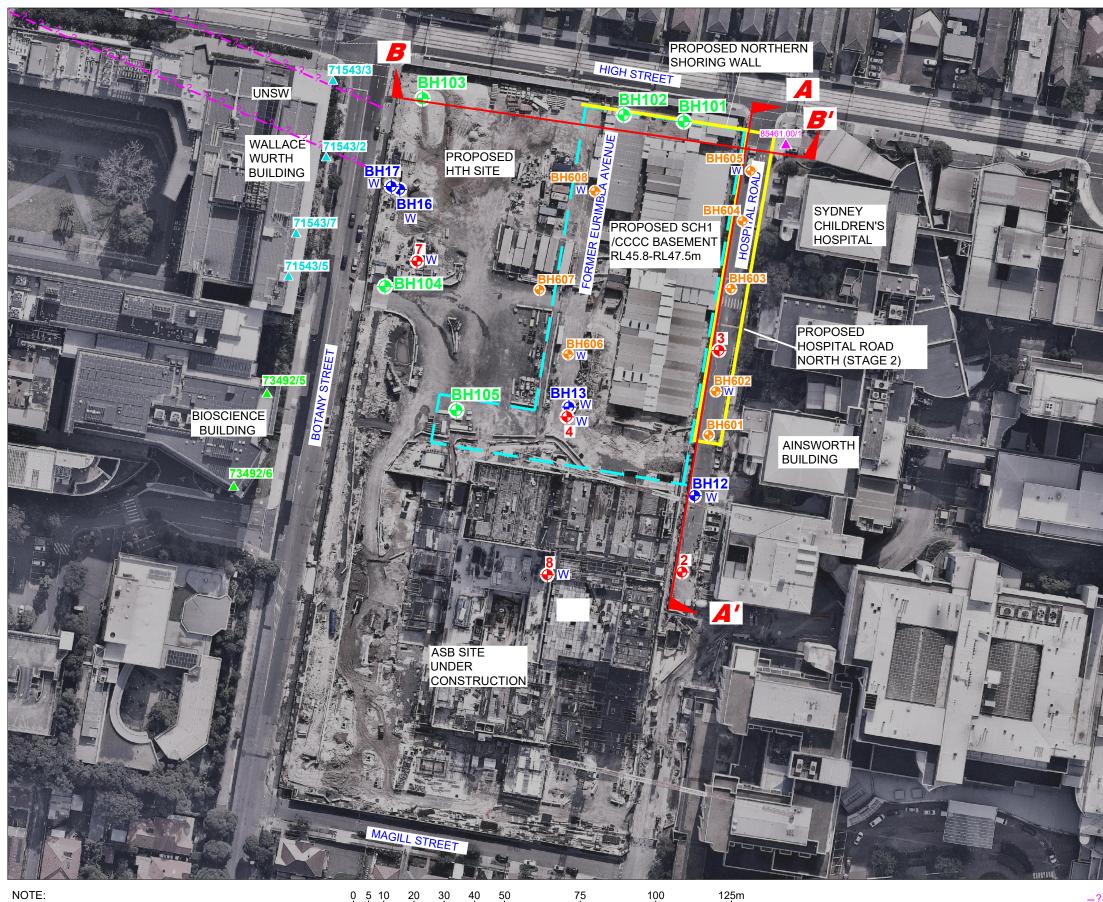
Igneous Rocks

Granite

Dolerite, basalt, andesite

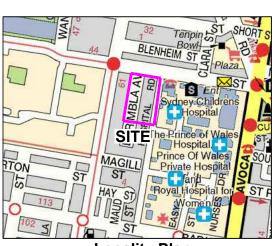
Dacite, epidote

Tuff, breccia


Porphyry

Appendix B

Drawings 1 to 3



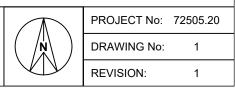
1: Base image from Nearmap.com (Dated 2.8.2020)

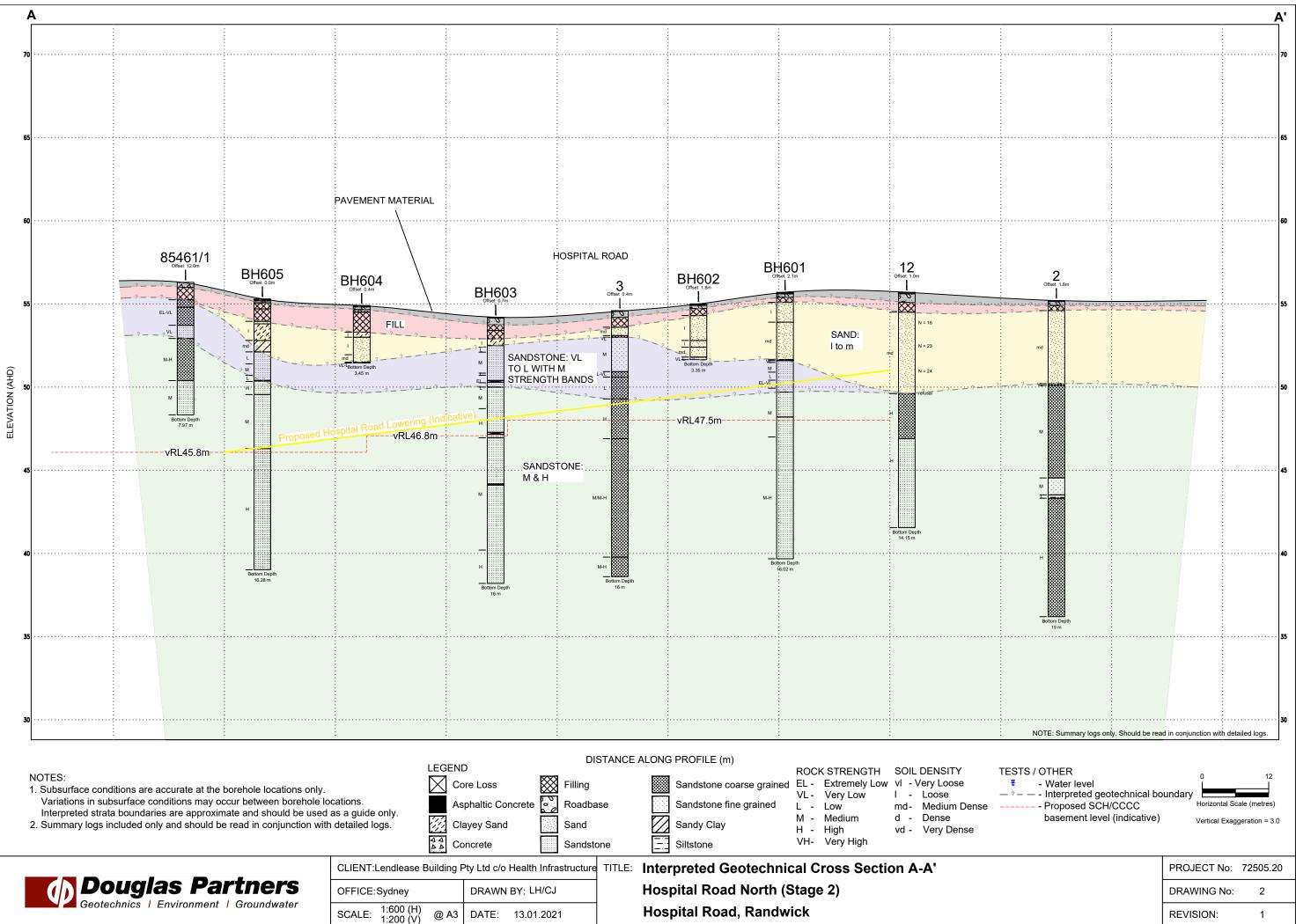
1:1250 @ A3

CLIENT: Lendlease Building	Pty Ltd c/o Health Infrastructure	TITLE: Locations of Previous and Current Boreholes
OFFICE: Sydney	DRAWN BY: CJ	Hospital Road North (Stage 2)
SCALE: 1:1250 @ A3	DATE: 10.12.2020	Hospital Road, Randwick

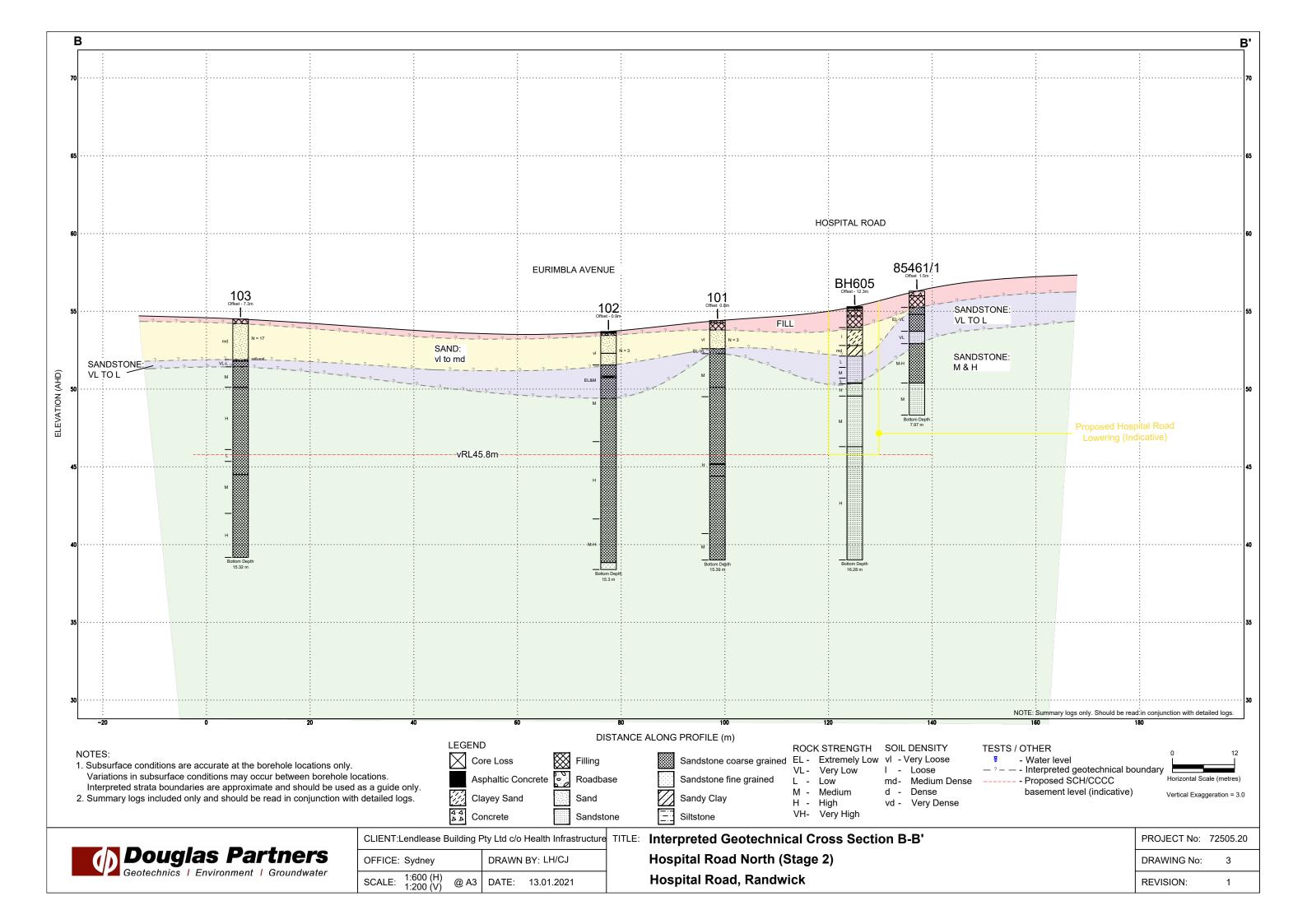
Locality Plan

LEGEND


- Previous borehole (UNSW Wallace Wurth Building, Proj. 71543, 2010)
- Previous borehole (UNSW Bioscience Building Proj. 73492, 2013)
- Previous borehole (Prince of Wales Hospital Proj. 85461.00, 2016)
- Previous borehole (Proj. 72505.11, Feb 2018)
- Previous borehole (Proj. 72505.13, May 2018)
- Previous borehole (Proj. 72505.13, March 2019)


Borehole (Proj. 72505.18, Sept 2020)

W Groundwater monitoring well


, Interpreted geotechnical boundary

Interpreted geotechnical Cross Section

0	5	
/	DRAWN BY: LH/CJ	Hospital Road
/LI)		

Appendix C

Results of Previous Investigations

SURFACE LEVEL: 54.4 AHD **EASTING:** 337086 **NORTHING:** 6245667 **DIP/AZIMUTH:** 90°/-- BORE No: 101 PROJECT No: 72505.13 DATE: 25/2/2019 SHEET 1 OF 2

\square		Description	Degree of	Rock	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth	of	Weathering	Contemporation Contemporatin Contemporation Contemporation Contemporation Contemp	Spacing	B - Bedding J - Joint			-	Test Results
	(m)	Strata	H M M M M M M M M M M M M M M M M M M M		0:00 0:100 1:00 (m)	S - Shear F - Fault	Type	င်္ဂ င်	RQD %	& Comments
	0.15	FILLING: grey, fine to medium sand					A	-		Commonto
-23-	0.10	\and gravel filling, damp (roadbase) / FILLING: yellow-grey, fine to						1		
	0.6	_ medium sand with sandstone					<u> </u>			
F F		cobbles and coarse sandstone gravel filing, moist								
[]	1	SAND: loose, brown, fine to medium					A			0.0.4
		sand, moist					S			2,2,1 N = 3
- 23										
	1.8	SANDSTONE: extremely low to very								
		low strength, extremely to highly								
	2.12	weathered, red-brown, medium to coarse grained sandstone				2.15&2.17m: B 0°-15°,				
- 27		SANDSTONE: medium strength,				cu, ro, cly vnr 2.35m: B 0°, pl, ro, cly	С	100	82	DL(A) = 0.0
		moderately weathered, red-brown, medium to coarse grained				10mm 2.41m: B 10°, un, ro, cly				PL(A) = 0.6
	3	sandstone with some very low strength bands				со				
					i ii ii	3.25m: B 0°, pl, ro, fg				
- 5-						10mm				PL(A) = 0.7
										1 L(A) = 0.7
	4									
	4.27		╡┊┊ ┖┑ ╡┊┊			4.06m · D.0° nl ro. oly	с	100	99	
-26-		SANDSTONE: medium and high strength, fresh, fractured and slightly				4.26m: B 0°, pl, ro, cly vn				
ŧŧ		fractured, pale grey, medium to coarse grained sandstone with some								PL(A) = 0.4
	5	extremely low strength clay bands		┊┥┯┯┯╇┓┆┆││		4.87-4.89m: Cs				
						5.10-5.11m: Cs				
49					: :: `]:	5.36m: B 0°, pl, ro, cln				PL(A) = 0.8
					i ii ii					
	6					5.93-5.96m: Cs				
48										PL(A) = 1.1
										()
ĒĒ	7									
							с	100	96	
4										PL(A) = 1
						7.57m: B 5°, pl, ro, cln				
	8			▓╪╤╤┪╹╎╎║		7.76m: B 10°, pl, ro, cln 7.84m: J 30°, pl, ro, cly				
ŧ	·					7.86-7.89m: Cs				
46										
										PL(A) = 0.7
	。									. ,
ŧ	9 9.24					, 9.14-9.16m: J 30°, pl, ro,				
45	3.24					cbs co 9.16-9.21m: fg	с	99	96	
EE						9.21m: CORE LOSS: 30mm				PL(A) = 1.4
	10.0									
						CADINO. 194	1 += 0	05		
кIG	i: Hanji	UDO URILL	ER: BG Drillin	y LOGO	GED: SLB	CASING: HW	ιο 2	.05m		

TYPE OF BORING: Solid flight auger to 2.05m, NMLC-coring to 15.39m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

SURFACE LEVEL: 54.4 AHD **EASTING**: 337086 **NORTHING**: 6245667 **DIP/AZIMUTH**: 90°/-- BORE No: 101 PROJECT No: 72505.13 DATE: 25/2/2019 SHEET 2 OF 2

Г			Degree of Weathering ™ M M M M M M M M M M M M M M M M M M M	Rock	F w4	Discontinuities		!'		
	Depth	Description	Weathering	Rock Strength	Fracture Spacing	Discontinuities				In Situ Testing Test Results
RL	(m)	of	. ab	Strength Low Low Low Very Low Very Low Medium Medium Valater	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	Dg%	&
\square		Strata	M H M S S S E					۳ ۳	<u>۳</u>	Comments
	- 11	SANDSTONE: medium and high strength, fresh, fractured and slightly fractured, pale grey, medium to coarse grained sandstone with some extremely low strength clay bands (continued)				11.32-11.37m: J 60°, pl, ro, fg	с	99	96	PL(A) = 0.8 PL(A) = 1.4
ĒĒ	- 12									1 L(A) = 1.4
42	- 13									PL(A) = 1.2
[]							С	100	96	
	- 14									PL(A) = 0.4
40										PL(A) = 0.9
	- 15					14.82m: B 0°, pl, ro, cly 10mm	с	100	100	PL(A) = 0.7
39	15.39	Bore discontinued at 15.39m								
	- 16	Target depth reached								
38										
	- 17									
37										
ĒĒ	- 18									
╞╞	10									
-%										
╞╞										
ŧ	- 19									
35	19									
Ē										
	G: Hanii		ER: BG Drilling		GED: SIB	CASING: HW			1	

RIG: Hanjin D8

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: BG Drilling

LOGGED: SLB

CASING: HW to 2.05m

TYPE OF BORING:Solid flight auger to 2.05m, NMLC-coring to 15.39mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U_x Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) C Core drilling W Water sample pp Pocket penetrometer (kPa)		S	SAMPLING	& IN SITU TESTING	G LEGEND		
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test is(50) (MPa) C Core drilling W Water sample pp Pocket penetrometer (kPa)	A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	_	
C Core drilling W Water sample pp Pocket penetrometer (kPa)			P				I
	BLK	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	1	I
	C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)		l
D Disturbed sample ▷ Water seep S Standard penetration test	D	Disturbed sample	⊳	Water seep	S Standard penetration test	. /	
E Environmental sample 📱 Water level V Shear vane (kPa)	E	Environmental sam	mple 📱	Water level	V Shear vane (kPa)		1

BORE: 101	PROJ	ECT: Randwick	February 2	019
Douglas Part		Project No: 72505.13 BH ID: 101 Depth: 2.05 – 7.00m Core Box No.: 1/3	ulundun	dunu
12505-13 BNU/1 5-02-19 Ben/15	ALL A			
3m			State College	
tm				EL .
5m		1 februaries		
Om		and the set of the set		
	2	.05 – 7.00 m		

BORE: 101	PRO	JECT: Randwick	February 2019
		Project No: 72505.13 BH ID: 101 Depth: 7.00-12.00m Core Box No.: 2/3	1.0.1.0.1.0.
	1		
NO			
	A.		

SURFACE LEVEL: 53.7 AHD **EASTING:** 337065 **NORTHING:** 6245669 **DIP/AZIMUTH:** 90°/-- BORE No: 102 PROJECT No: 72505.13 DATE: 26/2/2019 SHEET 1 OF 2

Π			Description	Deg	ree of	0	Rock	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
R		epth	of	Wea	thering	aphic og	Strendth Very Low Medium High Ex High Ex High Water	Spacing	B - Bedding J - Joint				
	(m)	Strata	<u> </u>	NS S R	с В П	X Low igh X High K High	0.01 0.100 0.50 (W)	S - Shear F - Fault	Type	င်္ဂ င်	RQD %	& Comments
\vdash		0.1	ASPHALTIC CONCRETE	<u>ш <u>т</u>≥</u>									Comments
	-	I	FILLING: grey, fine to medium sand and gravel filling, damp (roadbase)			XX				A			
53	-		SAND: loose, grey-brown, fine to medium sand with trace of fine sandstone gravel, damp (possibly										
	-1		filling)							<u> </u>			
	-			l i i	İİİ		iiiiii	i ii ii		s			1,1,2 N = 3
52		1.4 -	SAND: medium dense, yellow-brown, medium to coarse sand with trace clay, moist								-		
	-2	0.45		l i i	i i i								
		2.15-	SANDSTONE: medium strength, extremely then moderately weathered, fragmented and fractured, red-brown and							с	100	92	PL(A) = 0.4
5-	-		yellow-brown medium to coarse		111				∖ 2.82-2.86m: Cs				
	-3	2.96	grained sandstone with some extremely low strength clay bands						¹ 2.86m: CORE LOSS:				
	-		, , ,	Ē	i i i				100mm 3.1m: B 0°, pl, ro, fe 3.20-3.28m: Cs				PL(A) = 0.4
Ē	-			╽┎╧╧┙					3.20-3.28m: Cs 3.44-3.61m: Cs				
22	-												
	-4			╡┿╡					3.88-3.92m: Cs				
È	-	4 00		╡╤╧					4.14-4.18m: Cs		07		
49	-	4.29	SANDSTONE: medium and high strength, fresh, slightly fractured, pale grey, medium to coarse grained sandstone							С	97	84	PL(A) = 0.5
	-5		5.00-8.20m: some low and extremely low strength bands	╞╪┿			╺┿┿┥╎╎╎╎		4.98-5.03m: Cs				
	-								5.38-5.41m: Cs				PL(A) = 0.8
48	-6												
	-												PL(A) = 0.8
47													
	-								7.07m: B 0°, pl, ro, fg 10mm	с	100	100	PL(A) = 1.1
46	_												· • (· · · · · · · ·
	-8												
45	-								8.18m: B 0°, pl, ro, fg 10mm				PL(A) = 1.1
ŧ 1													
Ē	-9												
	-									с	100	100	
44	-								9.61m: B 0°, pl, ro, cly co				PL(A) = 1.2
RIC	G:	Hanjir	n D8 DRILL	ER: 1	3G Dri	lina	LOC	GED: SLB	CASING: HW	/ to 2	15m		

CLIENT:

PROJECT:

LendLease Building Pty Ltd

LOCATION: Hospital Road and High, Magill and Botany

Streets, Randwick

Randwick Campus Redevelopment

TYPE OF BORING:Solid flight auger to 2.15m, NMLC-coring to 15.30mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

	SAM	PLING	3 & IN SITU TESTIN	IG LEGE	ND			
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	_
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)			
BLK	Block sample	U,	Tube sample (x mm dia.)) PL(D	Point load diametral test ls(50) (MPa)	41.		
С	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)			-
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		G	eo

SURFACE LEVEL: 53.7 AHD **EASTING:** 337065 **NORTHING:** 6245669 **DIP/AZIMUTH:** 90°/-- BORE No: 102 PROJECT No: 72505.13 DATE: 26/2/2019 SHEET 2 OF 2

		Description	Degree of Weathering Dig Dig Dig Dig Dig Dig Dig Dig Dig Di	Rock	Fracture	Discontinuities	Sa	ampli	na &	In Situ Testing
R	Depth	of		Strength	5 0 1	B - Bedding J - Joint			-	-
	(m)	Strata	E S S S S S S S S S S S S S S S S S S S	Log Very Low Medium Very High Ex High	0.01 0.05 0.10 0.50 (U)	S - Shear F - Fault	Type	ပ္လွ် ပ္လ	RQD %	& Comments
42 43 43	-11	SANDSTONE: medium and high strength, fresh, slightly fractured, pale grey, medium to coarse grained sandstone <i>(continued)</i>				10.89m: B 5°, pl, ro, cly co	с		100	PL(A) = 1.1 PL(A) = 1.3
41	- 12 - 13					12.63m: B 0°, pl, ro, cln				PL(A) = 0.7
40	- 14	13.90-14.10m: indistinct siltstone laminations				13.16m: B 0°, pl, ro, fg 13.81m: J 30°, pl, ro, cln 13.92m: B 0°, pl, ro, cbs	С	100	100	PL(A) = 1.1
39	14.85 - 15	14.85-15.30m: fine to medium grained sandstone with approximately 5% carbonaceous				14.49m: B 5°, pl, ro, cly 5mm 14.79m: B 0°, pl, ro, cly 5mm 14.84m: B 0°, pl, ro, cly 8mm	с	100	63	PL(A) = 0.9
7 38	- 16	Vaminations // Bore discontinued at 15.3m Target depth reached								
36 37	- 17									
35	- 18 - 19									
34										

RIG: Hanjin D8

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

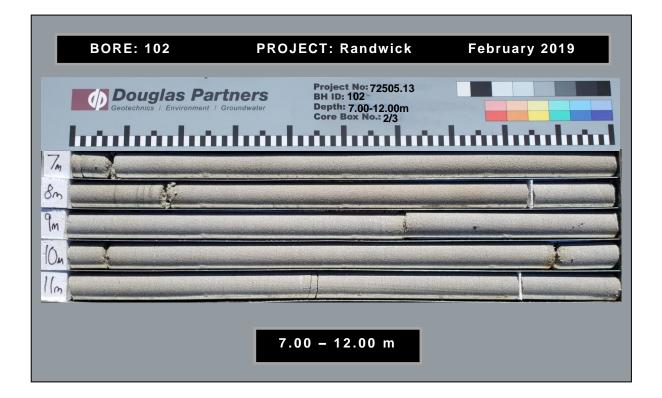
Streets, Randwick

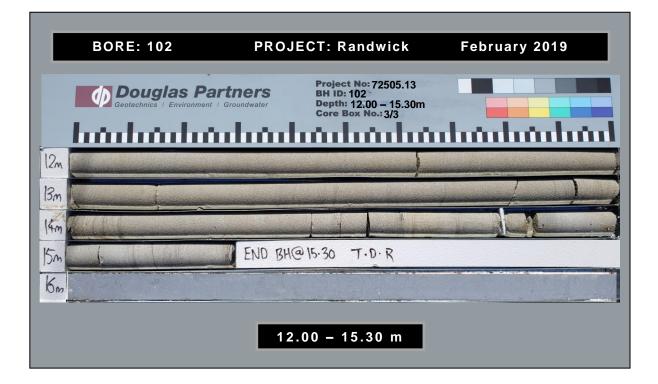
Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: BG Drilling

LOGGED: SLB


CASING: HW to 2.15m


TYPE OF BORING:Solid flight auger to 2.15m, NMLC-coring to 15.30mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

	SA	MPLING	6 & IN SITU TESTIN	G LEGE	IND		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	11.	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		0
E	Environmental sample) ¥	Water level	V	Shear vane (kPa)		Geotec

SURFACE LEVEL: 54.5 AHD EASTING: 336994 NORTHING: 6245675 DIP/AZIMUTH: 90°/-- BORE No: 103 PROJECT No: 72505.13 DATE: 26/2/2019 SHEET 1 OF 2

Π		Description	Degree of	Rock Fracture	e Discontinuities	Sa	amplii	ng & I	n Situ Testing
님	Depth	of	Weathering	Strength				-	Test Results
Ľ	(m)	Strata	E S S S S S S S S S S S S S S S S S S S	Strength Spacing (m) Social Spacing (m) Sp	B - Bedding J - Joint S - Shear F - Fault	Type	Rec.	RQD %	& Comments
53 54	-1	FILLING: pale grey, fine to medium sand filling with trace sandstone gravel and building rubble (terracotta, concrete, glass), humid SAND: medium dense, red-brown mottled dark grey, medium to coarse sand, moist				A A A S			3,8,9 N = 17
52	-2	2.30m: orange-brown				S	-		25/100
ĒĒ	2.6 2.7	SANDSTONE: extremely low strength, extremely weathered,		┋┗┿┿┓╎╎╎╎╎┝┝╾┿┿╼╎					refusal
51	- ³ 3.07	strength, extremely weathered, yellow-brown, medium to coarse grained sandstone SANDSTONE: low strength, extremely to highly weathered, medium to coarse grained sandstone with extremely low and very low strength bands							PL(A) = 0.3
20	-4 4.38-	SANDSTONE: medium strength, moderately weathered, fractured and slightly fractured, red-brown, medium to coarse grained sandstone SANDSTONE: medium and high strength, fresh, fractured and slightly			4.79m: B 0°, pl, ro, cly	С	100	93	PL(A) = 0.5
49		fractured, pale grey, medium to coarse grained sandstone with some extremely and very low strength bands			5.32-5.41m: J 70°, pl, ro, cln				PL(A) = 1.3
48	-6				6.17-6.24m: Cs 6.37-6.49m: J 70°, pl, ro, cln				PL(A) = 1.1
47	-7				6.96m: J 50°, pl, ro, fg 7.26-7.36m: J 45°-90°, cu, ro, cln 7.52-7.72m: B(x4) 5°-15°, pl, ro, fe	с	100	93	PL(A) = 2.3
46		8.39-9.10m: low strength							
	-9				9.15m: B 0°, pl, ro, cln				PL(A) = 0.2
45	10.0				9.47-9.50m: Cs	С	100	99	PL(A) = 0.8
	G: Hanji	n D8 DRII I	.ER: BG Drilling	LOGGED: SLE	CASING: HW	/ to 2	6		

RIG: Hanjin D8

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

TYPE OF BORING:Solid flight auger to 2.6m, NMLC-coring to 15.32mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

SAMPL	ING &	IN SITU TESTING LEG	GΕ	ND	
A Auger sample	G Gas	s sample PIE	D	Photo ionisation detector (ppm)	
B Bulk sample				Point load axial test Is(50) (MPa)	
BLK Block sample	U, Tub	ce sample (xmm dia.) PL	(D)	Point load diametral test ls(50) (MPa)	
C Core drilling	W Wa	ater sample pp		Pocket penetrometer (kPa)	
D Disturbed sample	⊳ Wa	ater seep S		Standard penetration test	
E Environmental sample	¥ Wa	ater level V		Shear vane (kPa)	

SURFACE LEVEL: 54.5 AHD **EASTING:** 336994 **NORTHING:** 6245675 **DIP/AZIMUTH:** 90°/-- BORE No: 103 PROJECT No: 72505.13 DATE: 26/2/2019 SHEET 2 OF 2

		· · · · ·						_ 01	
	Description	Degree of Weathering	Rock Strength 5 Spa	cture	Discontinuities				n Situ Testing
Depth (m)	of	aph	Strength Needium High High High High Needium High High High High High High High High	acing m)	B - Bedding J - Joint	Type	sre %	RQD %	Test Results
(,	Strata	ы Б Ш С	Ex Lo Very L Mediu Mediu 0.01 0	0.50	S - Shear F - Fault	Ţ	ပိမ္စ	R S ⊗	& Comments
- 11	SANDSTONE: medium and high strength, fresh, slightly fractured, pale grey, medium to coarse grained sandstone with some extremely and very low strength bands					с	100		PL(A) = 0.8 PL(A) = 0.7
					>>				FL(A) = 0.7
- 12 - 12 - 13						С	100	99	PL(A) = 1.2
- 14					13.75m: B 0°, pl, ro, cly vn				PL(A) = 1
6 - -									PL(A) = 1.2
- - - 15 -						с	100	100	
15.32 8 - - - 16	² Bore discontinued at 15.32m Target depth reached								
88- -									
- 17 - 28									
- 18									
≈ ≈ - - - - - - - - - - - - - - - - - -									
2000 2000 2000 2000 2000 2000 2000 200									
E									
		ER: BG Drilling			Casing: HW				

RIG: Hanjin D8

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: BG Drilling

LOGGED: SLB

CASING: HW to 2.6

TYPE OF BORING:Solid flight auger to 2.6m, NMLC-coring to 15.32mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

	SAN	IPLING	3 & IN SITU TESTING	G LEGI	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		 _	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		-	-
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			G

BORE: 103	PROJECT: Rand	dwick Fe	ebruary 2019
	rtners Groundwater Project No: BH ID: 103 Depth: 2.60 Core Box N	0 – 7.00m lo.: 1/3	
7150512 21 00.19	ORE @ 2.60M		
Sm			All the second
tm		4	1-1-1/
5m		The state	5
	2.60 - 7.00) m	

BORE: 103	PROJECT: Randwick	February 2019
Douglas Partn Geotechnics Environment Grou	Core Box No.: 2/3	
j. T		
	7.00 – 12.00 m	

BORE: 103	PROJI	ECT: Randwick	February 2019
	Groundwater	Project No: 72505.13 BH ID: 103 Depth: 12.00 – 15.32m Core Box No.: 3/3	1.0.1.0.1.0.
2m			
Sm.			
tm			
m	END BH @	215.32m T. D.R	
m	-		
	12.	.00 – 15.32 m	

 SURFACE LEVEL:
 54.4 AHD

 EASTING:
 336981

 NORTHING:
 6245609

 DIP/AZIMUTH:
 90°/-

BORE No: 104 PROJECT No: 72505.13 DATE: 27/2/2019 SHEET 1 OF 2

-		Description	We	egre	erina	<u>.</u>	Rock Strengt	h 🖵	Fracture	Discontinuities			-	n Situ Testing
	Depth (m)	of				Graphic Log	Ex Low Very Low Low Medium	V High U High Water	Spacing (m)	B - Bedding J - Joint	Type	ore . %	RQD %	Test Results &
			N N N H	MM Mo	N S B	e ط	Ex Lo Very Mediu High		0.05	S - Shear F - Fault	È	ပိမ္ဆိ	8	Comments
	0.2	FILLING: pale grey, fine to medium sand filling with building rubble (terracotta pipe, glass), damp	-								A			
-	0.5	SAND: brown, fine to medium sand, damp (possibly filling)										1		
-1		SAND: medium dense, yellow-brown mottled white, medium to coarse sand, moist									A			2,5,7
-		Sand, moist									S			N = 12
-2														
														5,8,9
-3											S			N = 17
-		3.40m: becoming yellow									A			
														10/120 refusal
- 4	4.12	SANDSTONE: low to medium	╞┼	$\frac{1}{1}$	ri i						S			Hammer
		strength, highly, moderately and slightly weathered, fractured and slightly fractured, red-brown and pale grey, medium to coarse grained sandstone with some extremely to									с	100	91	bouncing PL(A) = 0.
- 5		very low strength bands								4.88m: B 0°, pl, ro, cly 5.10-5.15m: B(x3) 0°, pl, ro, cly			51	PL(A) = 0.0
-6														
														PL(A) = 0.1
-7											с	100	100	
-														PL(A) = 0.8
-8	8.12	8.12-9.10m: fine to medium grained		ľ	 					8.12m: B 10°, pl, ro, cly				$D(\Lambda) = O(\Lambda)$
-		8.43-9.10m: high strength								5mm 8.42m: B 5°, pl, ro, cly co				PL(A) = 0.3
-9	9.1	SANDSTONE: medium and high								9.1m: B 0°, pl, ro, fg				
-		strength, fresh, fractured and slightly fractured, pale grey, medium to coarse grained sandstone								5mm 9.44m: B 5°-10°, st, ro, cly 8mm	С	100	98	PL(A) = 1.3

RIG: Hanjin D8

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

TYPE OF BORING:Solid flight auger to 4.12m, NMLC-coring to 15.81mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

SAM	PLIN	G & IN SITU TESTING	LEGI	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
3 Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partners
3LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1	1.	Douglas Parliers
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			Or a track wind the Environment of Compared with the
Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
					-		

SURFACE LEVEL: 54.4 AHD **EASTING:** 336981 **NORTHING:** 6245609 **DIP/AZIMUTH:** 90°/-- BORE No: 104 PROJECT No: 72505.13 DATE: 27/2/2019 SHEET 2 OF 2

			Degree of Weathering		Rock	Fractura	Discontinuitica	6.	moli	00.01	n Situ Testing
	Depth	Description	Weathering	phic vg	Very Low Very Low Medulum Very High Very High Vater	Fracture Spacing	Discontinuities			-	-
RL	(m)	of		Grap	V High	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Sore	RQD %	&
\square			A H A A A A A A A A A A A A A A A A A A	-	High High	0.05			۲×	<u>ب</u>	Comments
44	·11	SANDSTONE: medium and high strength, fresh, fractured and slightly fractured, pale grey, medium to coarse grained sandstone (<i>continued</i>) 10.92m: siltstone laminations and clasts					10.93-10.96m: B(x2) 0°-20°, cu, ro, cbs 11.02m: J 90°, pl, ro, cly	с	100	98	PL(A) = 1.2 PL(A) = 0.8
42	12	12.00-12.35m: indistinct siltstone laminations					12.2m: B 5°, pl, ro, cly ∫5mm 12.34m: B 10°, pl, ro, fg 12.71-12.74m: Cs				PL(A) = 1.1
41	·13	13.81-15.81m: indistinct siltstone					13.24-13.30m: J 70°, pl, ro, cln η 13.81-13.85m: J 45°, pl,	с	100	99	PL(A) = 0.9
40	· 14	laminations					13.85m: B 5°, pl, ro, cly vn				PL(A) = 1.3
39 1 1	· 15 15.81 -	Dava di capatin vad at 45 04 m						с	100	100	PL(A) = 0.9
ĘĘ	16	Bore discontinued at 15.81m Target depth reached									
38											
37	· 17										
36	· 18										
	· 19										

RIG: Hanjin D8

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: BG Drilling

LOGGED: SLB

CASING: HW to 4.12m

TYPE OF BORING:Solid flight auger to 4.12m, NMLC-coring to 15.81mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

	5	SAMPLING	3 & IN SITU TESTIN	IG LEGE	IND			
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		 _	
В	Bulk sample	P	Piston sample) Point load axial test Is(50) (MPa)			
BLK	Block sample	U,	Tube sample (x mm dia	.) PL(D) Point load diametral test Is(50) (MPa)			
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			0
Е	Environmental sam	nple 📱	Water level	V	Shear vane (kPa)			Geo
					()	-		

BORE: 104	PRO	JECT: Randwick	February 2019
		Project No: 72505.13 BH ID: 104 Depth: 4.12 – 9.00m Core Box No.: 1/3	
72505-13 27-02-14 STAPT RANDUICK BHIOLOGER			
5m 6m			
7m			
		4.12 – 9.00 m	

BORE: 104	PRO	JECT: Randwick	February 2019
Content of Content of		Project No: 72505.13 BH ID: 104 Depth: 9.00-14.00m Core Box No.: 2/3	
m			12
r		.00 – 14.00 m	

BO	RE: 104	PROJ	ECT: Randwick	February 2019
(Douglas Part		Project No: 72505.13 BH ID: 104 Depth: 14.00 – 15.81m Core Box No.: 3/3	
4m	(and the first second second	END 84@15.8
6m Im				
<u>Im I</u>				
		14	.00 – 15.81 m	

CLIENT:LendLease Building Pty LtdPROJECT:Randwick Campus RedevelopmentLOCATION:Hospital Road and High, Magill and Botany
Streets, Randwick

SURFACE LEVEL: 51.6 AHD **EASTING:** 337006 **NORTHING:** 6245565 **DIP/AZIMUTH:** 90°/-- BORE No: 105 PROJECT No: 72505.13 DATE: 27 - 28/2/2019 SHEET 1 OF 2

			Description	De	gree	e of	<u>.0</u>	Rock Strength	<u> </u>	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
RL	De (r	pth n)	of			g	Graphic Log		Water	Spacing (m)	B - Bedding J - Joint	e	e%	Q.,	Test Results
	(.	,	Strata	H K	MM SW	Ω H	Ō	Ex Low Very Low Medium Very High Ex High	> 10.0		S - Shear F - Fault	Type	Core Rec. %	RC %	& Comments
50		0.3	FILLING: grey-brown, fine to medium sand filling with some building rubble (concrete, terracotta fragments), humid SAND: medium dense, yellow-brown, fine to medium sand, damp									A A A S			3,5,6 N = 11
49	- 2	2.0	SAND: loose, yellow-brown mottled brown, medium to coarse sand with some clay, trace of decomposed wood and ironstone gravel, moist									A S			2,2,2 N = 4
48	- - - - - - - - - - -	3.5	SAND: loose, dark brown, fine to medium sand with some silt, wet 3.9m: becoming saturated						 			S	-		15/100 refusal
47		4.1	SANDSTONE: low to medium strength, slightly weathered and fresh, fractured and slightly fractured, medium to coarse grained, red-brown and pale grey sandstone with some extremely low strength bands						27-02-1		4.19-4.51m: B(x4) 5°-10°, pl, ro, cly, fe 4.93m: J 30°, pl, ro, cly	C	100	74	Hammer bouncing PL(A) = 0.2
5 46	- 6										5.52-5.56m: Cs 5.76m: B 0°, pl, ro, cly vn				PL(A) = 0.7 PL(A) = 0.4
44	-	7.23	SANDSTONE: medium and high strength, fresh, slightly fractured, pale grey, medium to coarse grained sandstone with some very low strength bands								6.82m: B 0°-5°, un, ro, fe 6.88m: B 0°-10°, st, ro, cly 5mm 7.35m: B 0°, pl, ro, cly vn	С	100	97	PL(A) = 0.7
43	- 8 - - - - -														PL(A) = 0.9
42	-9											С	100	93	PL(A) = 1.2

RIG: Hanjin D8

DRILLER: BG Drilling

LOGGED: SLB

CASING: HW to 4.1m

TYPE OF BORING:Solid flight auger to 4.1m, NMLC-coring to 15.50mWATER OBSERVATIONS:Free groundwater observed at 3.9m whilst augeringREMARKS:

	SA	AMPLING	& IN SITU TESTING	G LEGE	END	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sampl	e 📱	Water level	V	Shear vane (kPa)	

SURFACE LEVEL: 51.6 AHD **EASTING:** 337006 **NORTHING:** 6245565 **DIP/AZIMUTH:** 90°/-- BORE No: 105 PROJECT No: 72505.13 DATE: 27 - 28/2/2019 SHEET 2 OF 2

		Description	Degree of Weathering	Rock	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth (m)	of		Strength High Kery Low Medium Medi	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵°°	Test Results &
	(,		Q FR S S M F FR S S M F FR S S M F FR S S S S S S S S S S S S S S S S S S S		0.05 0.10 0.50	S - Shear F - Fault	Þ	ပိမ္စ	R ~	م Comments
40 41	-11	SANDSTONE: medium and high strength, fresh, slightly fractured, pale grey, medium to coarse grained sandstone with some very low strength bands <i>(continued)</i>				10.02m: J 30°-40°, cu, ro, cln 11.11-11.12m: B 0°, pl, ro, fg	С	100	93	PL(A) = 1 PL(A) = 0.8
39	- 12						С	100	99	PL(A) = 1
38	- 14	13.32-14.68m: indistinct and distinct carbonaceous laminations				13.66-13.68m: Cs				PL(A) = 0.6
37	- 15						с	100	95	PL(A) = 0.8
36	15.5	15.40-15.50m: carbonaceous flecks Bore discontinued at 15.5m								PL(A) = 0.8
35	- 16	Target depth reached								
34	- 17									
	- 18									
33	- 19									
32	G: Haniji		.ER: BG Drilling		ED: SLB	CASING: HW				

RIG: Hanjin D8

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: BG Drilling

LOGGED: SLB

CASING: HW to 4.1m

TYPE OF BORING:Solid flight auger to 4.1m, NMLC-coring to 15.50mWATER OBSERVATIONS:Free groundwater observed at 3.9m whilst augeringREMARKS:

SAM	PLIN	G & IN SITU TESTING	LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1		Douolas Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

Project No: 72505.13 BH ID: 105 Depth: 4.10 – 9.00m Core Box No.: 1/3	a de cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale de
Tion Broker por	
「「ない」になったので、「ない」というない。「ない」、「ない」、「ない」、「ない」、「ない」、「ない」、「ない」、「ない」、	

BORE: 105	PROJ	JECT: Randwick	February 2019
Douglas Part		Project No: 72505.13 BH ID: 105 Depth: 9.00-14.00m Core Box No.: 2/3	1.0.1.0.1.0.
M			
Dm ACC			
m			
M	Contra and		Z
hm			
	9.	00 – 14.00 m	

BORE: 105	PRO	JECT: Randwick	February 2019					
Douglas Pa Geotechnics Environmen	artners t Groundwater	Project No: 72505.13 BH ID: 105 Depth: 14,00 – 15.50m Core Box No.: 3/3						
4m J C			>					
5-		END BH @ 15	550m T.D.R					
6m								
7m -								
18m								
	14	4.00 – 15.50 m						

SURFACE LEVEL: 56.3 AHD^ EASTING: 337123.2 NORTHING: 6245657.1 DIP/AZIMUTH: 90°/--

BORE No: 1 **PROJECT No: 85461.00 DATE:** 26/5/2016 SHEET 1 OF 1

		Description	Degree of Weathering	. <u>ല</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
ᆋ	Depth (m)	of	Weathering	srapt Log	Strength Very Low Medium Kery High Ex High Ex High Medium Kery High Medium Kery High Kery High Kery High Kery Low Kery L	Spacing (m)	B - Bedding J - Joint	Type	ore دى %	RQD %	Test Results &
		Strata	E S S M M M M M M M M M M M M M M M M M		Ex Low Very Low Medium Very High Ex High	0.10	S - Shear F - Fault	L L	йğ	ж °.	Comments
20	0.31	CONCRETE SLAB FILLING - apparently moderately compacted, orange-brown and grey, gravelly clayey sand filling with a trace of sandstone cobbles, damp					Note: Unless otherwise stated, rock is fractured	E			
55	^{.1} 1.05	SANDSTONE - extremely low and very low strength, orange-brown and		\mathbf{X}			along rough planar bedding dipping 0°- 10°		_		
	1.5	purple, medium to coarse grained sandstone with some iron-cemented bands SANDSTONE - extremely low and	 L L L					E	100	76	PL(A) = 0.04
54	·2 2.58	very low strength, extremely then highly weathered, slightly fractured, red-brown, orange-brown and grey medium to coarse grained sandstone with some iron-cemented bands					2.06m: B0°, cly, 10mm 2.12m: B0°, cly, 30mm 2.26m: B0°, cly, 30mm 2.67 & 2.78m: B0°, cly yn, fe stn				PL(A) = 0.08 PL(A) = 0.09
53	·3 3.38	L- very fine grained sandstone/siltstone below 2.3m SANDSTONE - very low strength, moderately weathered, slightly fractured, pink-grey and pale grey fine to medium grained sandstone					3.28m: B0°, cly, 20mm 3.3-3.36m: J90°, pl, ro, cly vn	с	100	96	PL(A) = 0.08
52	-4	with up to 15% siltstone laminations SANDSTONE - medium and high strength, slightly then moderately weathered, slightly fractured, pale grey, grey and purple-brown, medium to coarse grained sandstone with some extremely low strength, extremely weathered					√3.37m: B0°, cly, 20mm 3.7m: B5°, cly vn 4.31m: Ds, 150mm 4.57 & 4.74m: B5°, cly vn				PL(A) = 0.6 PL(A) = 1.2
51	.5	bands and some iron-cemented bands					5.11 & 5.37m: B5°, cly vn 5.14 & 5.44m: B0°, cly, 10mm 5.45-5.52m: J45°, ir, ro 5.68m: B5°, cln				PL(A) = 0.4
20	5.91	SANDSTONE - medium strength, fresh, slightly fractured, pale grey, medium to coarse grained sandstone with some extremely low strength bands					6.11m: B0°, cly, 15mm 6.26m: B0°, cly vn	с	100	89	PL(A) = 0.6
49	-7						7.18m: B0°, cly vn				PL(A) = 0.7
48.	. ₈ 7.97 .9	Bore discontinued at 7.97m - target depth reached					7.89 & 7.91m: B5°, cly vn				
-											

RIG: Bobcat

CLIENT:

PROJECT:

Health Infrastructure

LOCATION: Prince of Wales Hospital, Randwick

Site Infrastructure Investigation

DRILLER: GM

LOGGED: MP

CASING: HW to 1.5m TYPE OF BORING: Diacore to 0.31m; NDD to 1.05m; Solid flight auger to 1.55m; NMLC-Coring to 7.97m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: NDD = Non destructive suction drilling. ^Surface level provided by LTS Lockley Pty Ltd

A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	Bauthasa
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	liac Vartnore
C Core drilling W Water sample pp Pocket penetrometer (kPa)	las Partners
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample V Shear vane (kPa)	Environment Groundwater

CLIENT: **Bovis Lend Lease** PROJECT: Wallace Wurth Redevelopment LOCATION: Cnr High & Botany St, UNSW, Kensington SURFACE LEVEL: 55.8 AHD BORE No: 2 EASTING: NORTHING:

DIP/AZIMUTH: 60°/0

PROJECT No: 71543 DATE: 01 Feb 10 SHEET 1 OF 2

Douglas Partners Geotechnics · Environment · Groundwater

.	Description	Degree of Weathering	_ Rock Strength	Fracture	Discontinuities			<u> </u>	In Situ Testin
Depth (m)	י of			Spacing (m)	B - Bedding J - Joint	Type	sre %	RQD %	Test Result &
	Strata	O RESEARCE		0.01 0.10 0.10 1.00	S - Shear D - Drill Break		ပိန္နိ	Я,	Comments
0.1	1 FILLING - dark grey, fine grained, silty sand filling with some rootlets (topsoil)								
-	FILLING - dark grey brown, fine to medium grained, sand filling with a trace of gravel, humid					A/E A			
-1 1.0	FILLING - light grey, fine to medium grained, sand filling with a trace of concrete fragments					A/E			
1.8 -2	.8 SAND - orange and light grey, fine to medium grained sand, moist								
						A/E			
-3									
-4	5 SAND - orange brown, medium grained sand, moist				Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	A			
4.3	very low strength, extremely to				or joints				
4.65 - 5	⁶⁵ highly weathered, light grey then light grey brown, medium to coarse grained sandstone with extremely low strength, igneous rock inclusions				4.65m: CORE LOSS: 100mm 4.75-4.85m: dyke	с	92	o	
-6					6.33-7.25m; dyke				PL(A) = 0.7
6.52 •7	to very high strength, highly and slightly weathered, highly fractured to fractured, grey and brown,	- 1 			6.53-7.25m: highly fractured to fractured sandstone (dyke) in subvertical joints	C	100	0	
7.3	nedium to coarse grained sandstone with extremely low strength, igneous rock inclusions (cooked sandstone)				7.2m: CORE LOSS: 480mm 7.68-7.78m: fragmented	с	62	0	PL(A) = 1.9
-8 8,4	4	│ ┥┥┥┥ ╵ ╡			in 0.02m intervals 7.88-8.13m: J, subvertical, rough 8.05-8.08m: clay band				PL(A) = 4.9
-9	IGNEOUS ROCK & SANDSTONE extremely low and very low strength, extremely and highly weathered, grey and orange brown, medium to coarse grained sandstone with frequent igneous rock intrusions. Some high strength fractured bands				8.13m: J75°, rough 8.28-8.31m: clay band 8.31m: J, subvertical, ironstained 9.4m: CORE LOSS: 1050mm	с	34	o	
		X			9.45-9.65m: fragmented to 0.02m intervals				PL(A) = 1.3

CHECKED

//0

Initials: STE

Date: /7

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 4.65m; NMLC-Coring to 14.4m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** Standpipe installed to 14.4m

SAMPLING & IN SITU TESTING LEGEND Auger sample Disturbed sample Buik sample Tube sample (x mm dia.) Water sample Core drilling A D B U, W

- J IES I ING LEGEND

 pp
 Pocket penetrometer (kPa)

 PID Photo ionisation detector

 S
 Standard penetration test

 PL
 Point load strength Is(50) MPa

 V
 Shear Vane (kPa)

 D
 Water seep

SURFACE LEVEL: 55.8 AHD BORE No: 2 EASTING: **NORTHING:**

DIP/AZIMUTH: 60°/0

PROJECT No: 71543 **DATE:** 01 Feb 10 SHEET 2 OF 2

_										
		Description	Degree of Weathering i≌	Rock Strength	Fracture	Discontinuities			<u> </u>	In Situ Testing
뉟	Depth (m)	of			Spacing (m)	B - Bedding J - Joint	g	ഉ%	<u>e</u> .,	Test Results
		Strata	G G		0.01	S - Shear D - Drill Break	Type	ပိမ္ထိ	RQD %	& Comments
65	10.0	IGNEOUS ROCK & SANDSTONE - extremely low and very low strength, extremely and highly weathered, grey and orange brown, medium to coarse grained sandstone with frequent igneous rock intrusions. Some high strength				10m: CORE LOSS: 450mm 10.45-10.6m: fragmented to 0.01m intervals	с	50	0	
99	- 11	fractured bands (continued)				10.9m: CORE LOSS: 1100mm	с	19	0	
67	-12 12.0 -13	SANDSTONE - alternate bands of very low and medium to high strength, highly and moderately to slightly weathered, fragmented to slightly fractured, light grey and brown, coarse grained sandstone with bands of igneous rock intrusions				12.0-12.25m: fragmented 12.3m: J80°, healed 12.37m: J20°, ironstained 12.43m: J15°, ironstained 12.47-12.6m: very low strength band				PL(A) = 1.7MPa
	13,56 - 14					12.64m: J70°, healed 12.8m: J65°, ironstained 12.92m: B0°, very low strength band 13.13m: J80°, healed 13.29m: J65°,	C	88	0	
-8	-			╡ ╺╪╍╪╍┿┥ ╏╎╎		ironstained very low				
	14.35	Bore discontinued at 14.4m	┝ ┥╪╪╎┇╪╡ ╞╧╧	╡╶╞╍╞╸╡╶╞┫ ┿╍┽╾╡		strength band 13.4m: J30°, ironstained			<u> </u>	
69	-15					very low strength band 13.48-13.56m: fragmented in 0.02mm intervals 13.56m: CORE LOSS: 200mm 13.76m: J60°, ironstained 13.76-13.92m: fragmented				
02	- 16					14m: J85° 14.15m: J70°, ironstained, clay band 14.25m: J50°, ironstained 14.3-14.4m: fragmented 14.35m: CORE LOSS: 50mm				
И	- 17									*
	-18									
72	-19									
-	-					l				

RIG: Bobcat

DBU,WC

CLIENT:

Bovis Lend Lease PROJECT: Wallace Wurth Redevelopment

LOCATION: Cnr High & Botany St, UNSW, Kensington

DRILLER: Steve S

LOGGED: SI

CASING: HW to 2.6m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 4.65m; NMLC-Coring to 14.4m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** Standpipe installed to 14.4m

	SAMPLING & IN SITU	TESTING LE
Access and a second a		and On all of a set

Auger sample Disturbed sample Buik sample Tube sample (x mm dia.) Water sample Core drilling

 TESTING LEGEND

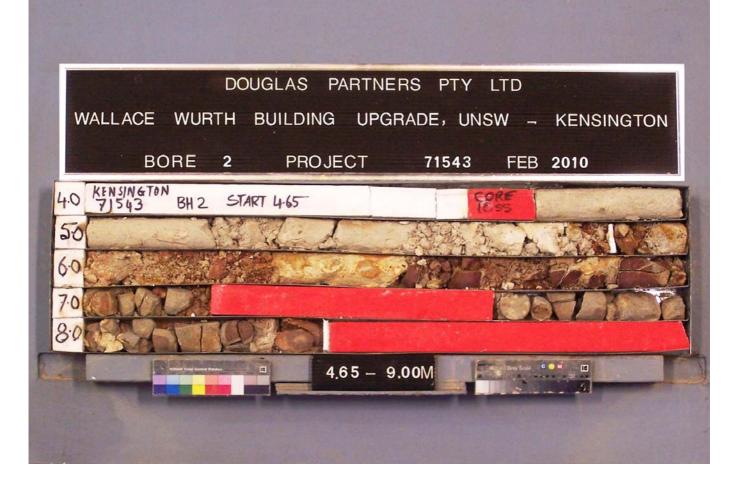
 pp
 Pocket penetrometer (kPa)

 PID
 Photo ionisation detector

 Standard penetration test

 PL
 Point load strength (s(50) MPa

 V
 Shaar Vane (kPa)


 D
 Water seep

 ¥
 Water level

CHECKED Initials: STEDate: 17 //0

SURFACE LEVEL: 56.2 AHD BORE No: 3 EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

PROJECT No: 71543 DATE: 3-8 Feb 2010 SHEET 1 OF 2

	Description	Degree of Weathering & ≩ ≩ ≩ ≋ ∞ ≝	. <u></u>	Rock Strengt	h 🖵	Fracture	Discontinuities	Sa	mplin	ıg & I	n Situ Testing
Dept ال (m)	i) 01	ricationing	laph Loa		Nate	Spacing (m)	B - Bedding J - Joint	Туре	Core Rec. %	0 %	Test Results &
<u> </u>	Strata						S - Shear D - Drill Break		ပည္ထ	<u>د</u> م	Comments
8	FILLING - dark brown, sand fil							A A			
	5.1 SAND - medium dense, light brown, fine to medium grained sand							s			4,6,9 N = 15
-2 5-	- yellow below 2.2m							s			3,6,11 N = 17
-3 8- :	3.2 IGNEOUS ROCK (DYKE) -		X				Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping at 0°- 10° or joints	A			
	extremely low to very low stren extremely to highly weathered grey to red brown, igneous roo (dyke)	ngth, IIII	X X X X X X X								
22			× × × ×					с	90	0	
5 5	4.86		XXXX		05-03-10		4.86m: CORE LOSS: 140mm				
-6 8	5.8		Ì				5.8m: CORE LOSS: 1200mm	с	40	0	
-7 ·	7.0 ROTARY DRILLING		$\left \right\rangle$				7.0-9.5m: rotary drilling	 			
- 8							dyke	R			
48											
41 09											
- - - -	9.5 IGNEOUS ROCK - description page		X X X				9.7-9.95m: fragmented into 0.05mm intervals	с	83	0	PL(A) = 0.8MF

RIG: Bobcat

CLIENT:

Bovis Lend Lease PROJECT: Wallace Wurth Redevelopment

LOCATION: Cnr High & Botany St, UNSW, Kensington

DRILLER: Steve S

LOGGED: SI

CASING: HW to 3.6m

TYPE OF BORING: Solid flight auger to 3.6m; NMLC-Coring to 7.0m; Rotary to 9.5m; NMLC-Coring to 13.0m; Rotary to 14.5m; NMLC-Coring to 15.15m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Groundwater well installed to 18.0m. Water measured in well at 4.9m on 5/3/10

SAMPLING & IN SITU TESTING LEGEND Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling A D B U, W C

 TESTING LEGEND

 pp
 Pocket penetrometer (kPa)

 PID
 Photo ionisation detector

 Standard penetration test

 PL
 Point load strength (s(50) MPa

 V
 Shear Vane (kPa)

 Vater seep
 Water level

Douglas Partners Geotechnics · Environment · Groundwater

SURFACE LEVEL: 56.2 AHD BORE No: 3 EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

PROJECT No: 71543 DATE: 3-8 Feb 2010 SHEET 2 OF 2

		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities				In Situ Testing
RL	Depth (m)	of Strata	EW HW SSW Graph Craph		Spacing (m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core Rec. %	RQD %	Test Results & Comments
46		IGNEOUS ROCK (DYKE) - extremely low to very low and medium strength, extremely to highly weathered, fractured, light grey brown to red brown, igneous rock with medium strength sandstone bands				10m: CORE LOSS: 100mm 10.6m: J70°, clay band 11.2-11.6m: fragmented in 0.02mm intervals	с	69	0	
44	-11.77 -12					11.77m: CORE LOSS: 830mm 12.6-12.8m: fragmented				PL(A) = 0.6MPa PL(A) = 0.5MPa
43	- 13 ^{12.95} - 13.0' 14	ROTARY DRILLING				in 0.02 to 0.05mm intervals 12.8-12.95m: clay band 12.95m: CORE LOSS: 50mm 13.0-14.15m: rotary drilling to weathered rock	R			
42	14.15 14.73	(sandstone)				14.23m: J10°, 30mm clay 14.23-14.43m: (x4) B0°- 5°, ironstained 14.59m: B0°, 20mm clay	c	100	0	PL(A) = 2.1MPa
, , , , , , , , , , , , , , , , , , ,	-15 15.15	IGNEOUS ROCK (DYKE) - extremely low to very low strength, extremely weathered, light grey brown, igneous rock (dyke) ROTARY DRILLING				14.74-14.8m: extremely low strength dyke 14.78-15.15m: extremely low strength dyke				
40	-17						R			
38	- 18	IGNEOUS ROCK (DYKE) - high to very high strength, fresh stained, fractured to slightly fractured, light greenish grey and brown, igneous rock (dyke). Some medium strength bands				17.2m: J, subvertical, heated, ironstained 17.3m: J70°, heated, ironstained 17.4-17.6m: J, subvertical, partially heated, fragmented into 0.05mm intervals	с	100	63	PL(A) = 9.2MPa PL(A) = 3MPa PL(A) = 0.7MPa
<u>4</u> 8	- - - - 19	Bore discontinued at 18.3m				17.74m: J85°, partially healed 17.85m: J70° 18.07m: J65°, rough 18.21-18.3m: J75°, clay smear & fragmented into 0.03mm intervals				

RIG: Bobcat

Core drilling

CLIENT:

PROJECT:

Bovis Lend Lease

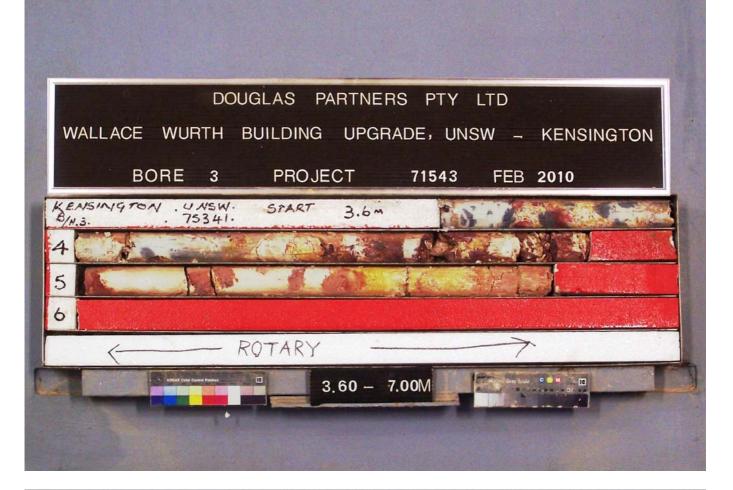
Wallace Wurth Redevelopment

LOCATION: Cnr High & Botany St, UNSW, Kensington

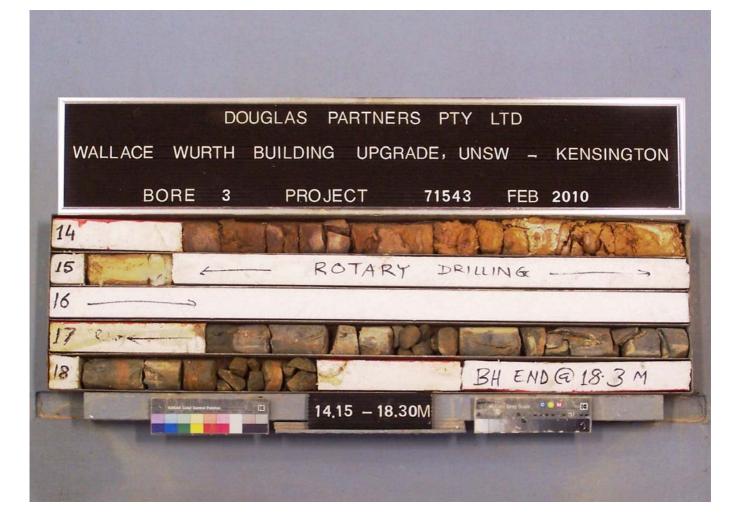
DRILLER: Steve S

LOGGED: SI

CASING: HW to 3.6m


Douglas Partners Geotechnics · Environment · Groundwater

TYPE OF BORING: Solid flight auger to 3.6m; NMLC-Coring to 7.0m; Rotary to 9.5m; NMLC-Coring to 13.0m; Rotary to 14.5m; NMLC-Coring to 15.15m WATER OBSERVATIONS: No free groundwater observed whilst augering


REMARKS: Groundwater well installed to 18.0m. Water measured in well at 4.9m on 5/3/10

SAMPLING & IN SITU TESTING LEGEND Auger sample Disturbed sample A D B U W C

CLIENT: Bovis Lend Lease PROJECT: Wallace Wurth Redevelopment LOCATION: Cnr High & Botany St, UNSW, Kensington

SURFACE LEVEL: 55.9 AHD BORE No: 5 EASTING: NORTHING: DIP/AZIMUTH: 90°/--

PROJECT No: 71543 DATE: 01 Feb 10 SHEET 1 OF 1

Π		Description	Degree of Weathering		Rock		Fracture	Discontinuities	Sa	moli	nα & I	in Situ Testing
뉟	Depth	of	Weathering		Strength	ater	Spacing		0	%		Test Results
	(m)	Strata	EW MW SW FR Grat	<u> </u>	Ex Low Medium Frey High	0.01 V	(m) 응문 응원	B - Bedding J - Joint S - Shear D - Drill Break	Type	Rec.	RQD %	& Comments
54	0.1 -1 -2 2.0	Grained, sand filling with some silt and gravel and a trace of slag and ceramic tile fragments, humid FILLING - light brown, medium grained, sand filling with some crushed sandstone										3,8,8 N = 16
53	-3	and light grey, fine to medium grained sand, moist							A S			6,10,12 N = 22
5	-4 -5 -5.	SANDSTONE - very low strength, orange brown, medium grained sandstone						Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping at 0°- 10°	S			9,10,13 N = 23 20,20/25mm refusal
50	-6							6.1m: B0°, ironstained 6.62m: B0°, 5mm sandy clay				PL(A) = 0.5MPa PL(A) = 0.4MPa
48 49	-7							 6.65m: B0°, 10mm sandy clay 7.44 & 8.28m: (x2) B0°- 5°, clay veneer 	c	100	99	PL(A) = 1.1MPa
	- 8.8	Bore discontinued at 8.8m										PL(A) = 1.1MPa
46 47	-9											

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 5.8m

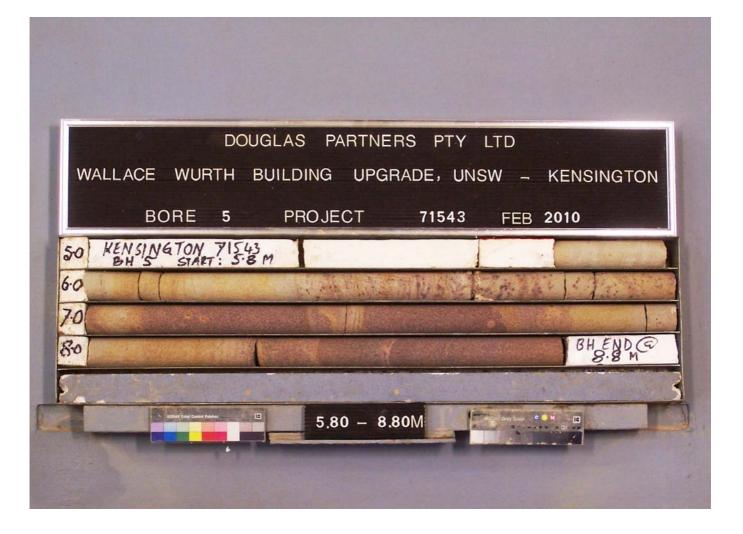
TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 5.8m; NMLC-Coring to 8.8m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling A D B U, W C

 PD
 Pocket penetrometer (kPa)

 PID
 Photo tonisation detector

 S
 Standard penetration test


 PL
 Point load strength Is(50) MPa

 V
 Shear Vane (kPa)

 D
 Water seep

CLIENT: **Bovis Lend Lease** PROJECT: Wallace Wurth Redevelopment LOCATION: Cnr High & Botany St, UNSW, Kensington SURFACE LEVEL: 55.8 AHD BORE No: 7 EASTING: **NORTHING:**

DIP/AZIMUTH: 90°/--

PROJECT No: 71543 DATE: 29 Jan 10 SHEET 1 OF 1

			Den (<u> </u>	Deale		I					<u> </u>
	Depth	Description	Degree of Weathering	말	Rock Strength	-	Fracture Spacing	Discontinuities				n Situ Testing
Ы	(m)	of		Loc	Strength	Vat	(m)	B - Bedding J - Joint	Type	ore 0.%	RoD %	Test Results &
\square			WH M S E E	U U		7 10.0	0.10	S - Shear D - Drill Break		ပိန္ဆိ	٣ू پ	Comments
	0.1 0.4	FILLING - brown, fine grained, silty sand filling (topsoil) with some gravel and rootlets		X					A A A/E			
		FILLING - brown sand and crushed sandstone filling, humid		\bigotimes					A/E			
	•1	FILLING - light to dark brown, fine to medium grained sand filling, with a trace of gravel, humid to moist		\bigotimes					A/E			
	1.5	1.3-1.45m: concrete fragments FILLING - light brown, fine to medium grained sand with some		\bigotimes					_			
	-2	sandstone gravel (possible natural)		\bigotimes					A			
53				\bigotimes					s	-		4,5,5 N = 10
	-3 3.0	SAND - medium dense, orange brown, medium grained sand, moist				1						
									AA			
	-4							Note: Unless otherwise stated, rock is fractured	s			11,15,20/10mm refusal
51	4.9							along rough planar bedding dipping at 0°- 10° or joints				
	-5 5.2	SANDSTONE - very low strength, light grey brown, medium grained sandstone										
- 26-	5.68	SANDSTONE - medium strength, moderately weathered, fractured to slightly fractured, red brown, medium grained sandstone						5.42m: B5°, clay veneer 5.58m: B10°, 10mm sandy clay				PL(A) = 0.6MPa
	·6	SANDSTONE - medium then high strength, slightly weathered and fresh, unbroken, light grey and red brown, medium to coarse grained,						5.63m: B5°, 50mm clay 5.68-8.35m: massive sandstone				PL(A) = 0.8MPa
64	•7	massive sandstone							c	100	97	
												PL(A) = 0.9MPa
4	8											PL(A) = 1.4MPa
	8.35	Bore discontinued at 8.35m										
4	•9											
-9		······································										

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 5.0m

TYPE OF BORING: Solid flight auger to 5.2m; NMLC-Coring to 8.35m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND A D B U,W C

Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling

p Pocket penetrometer (kPa) pPocket penetrometer (kPa) PID Photo ionisation detector S Standard penetration test PL Point load strength Is(50) MPa V Shear Vane (kPa) D Water seep ₹ Water level

SURFACE LEVEL: 55.1 AHD^ EASTING: NORTHING:

DIP/AZIMUTH: 90%--

BORE No: 5 PROJECT No: 73492 DATE: 7/6/2013 SHEET 1 OF 1

		Description	Degree of Weathering	U	Rock	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
	Depth	of	vveathering	Graphic Log	Strength Bundling Strength High High High High Strength S	Spacing (m)	B - Bedding J - Joint		-		
	(m)	Strata	H H K M K F S K F S K	5 J	Very Low Very Low Very High Ex High		S - Shear F - Fault	Type	Rec.	RQD %	& Comments
3	0.1	CONCRETE									
ţ	0.4	FILLING - yellow brown, sand and crushed sandstone filling, humid		\bigotimes				A/E			
Ę		FILLING - poorly compacted, brown,		\bigotimes				E.	1		
Ē		fine to medium grained sand filling with some sandstone gravel and a		\bigotimes							
5-1		trace of organic matter, humid		\bigotimes				E			
1				\bigotimes							
Ē		- with some brick fragments at 1.5m		\bigotimes				E			
ŀ		····· • • · · · · · · · · · · · · · · ·		\bigotimes				s			5,3,2 N = 5
-2				\bigotimes				E			
				\bigotimes					1		
ŧ				\bigotimes				E			
F				\bigotimes							
-3				\bigotimes				E			
*-				\bigotimes				s			2,2,4 N = 6
Ē	3.4	SAND - loose becoming medium		XX							N = 0
ł		dense, yellow brown, fine to medium grained sand, humid									
4		grained sand, numid						E			
4				• • •					1		
F											
E						ii ii		s			5,10,15
ŧ.											N = 25
-5											
Ę											
E											
ļ						ii ii	Unless otherwise stated				
-6							rock is fractured along rough planar bedding	s	1		10,35/150m
Ē	6.2	SANDSTONE - extremely low then very low strength, light grey, fine to			┝┗┓┊┊┊┊┊┊┊		dipping at 0°-10°				refusal
F	6.47	\medium grained sandstone									
Ē		SANDSTONE - high strength, slightly then moderately weathered.									PL(A) = 1.
-7		slightly fractured and unbroken, light grey and light purple brown, medium				i ili i	7 44 m DO fa aluar				
E		to coarse grained sandstone					7.11m: B0, fe, cly co 1mm				
Ę											PL(A) = 1.
F											
-8								С	100	100	
ŧ											
E							8.35m: B20, cly vn				
ŧ											PL(A) = 1.
-9											
ŀ		9.05m to 9.58m: fresh									
ŧ	9.58										PL(A) = 1.3
F		Bore discontinued at 9.58m									

RIG: Terrier

CLIENT:

PROJECT:

The University of New South Wales

Proposed Building Upgrade

LOCATION: UNSW, Botany Road, Kensington

DRILLER: Tightsite

LOGGED: SI/AG

CASING: HQ to 6.3m

TYPE OF BORING: Diatube to 0.1m, hand auger to 1.5m, solid flight auger to 6.47m, NMLC-Coring to 9.58m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: ^Surface level interpolated from Dwg No K-FME-2013.0002, Rev A, 31.5.13.

	SAM	PLINC	3 & IN SITU TESTING	LEGI	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)		Douglas Partners
C	Core drilling	Ŵ	Water sample	, aa	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
Е	Environmental sample	Ţ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 52.8 AHD^ EASTING: NORTHING:

DIP/AZIMUTH: 90%--

BORE No: 6 PROJECT No: 73492 DATE: 6/6/2013 SHEET 1 OF 1

			1		<u> </u>						
		Description	Degree of Weathering	<u>.</u>		Fracture	Discontinuities			-	n Situ Testing
RL	Depth (m)	of		aph Log		Spacing (m)	B - Bedding J - Joint	e	е %.	Q	Test Results
	(11)	Strata	<u>ຈ</u> ≩ ≷ ຈ ທ ⊮	Q_	ix Lov /ery L /ery H is His	O.010 O.010 O.010 O.10 O.10	S - Shear F - Fault	Type	ပ်နို	RQD %	& Comments
H	- 0.08					1 11 11					Connicilio
22	- - - 0.5 -	FILLING - brown and yellow brown, fine to medium grained sand filling with a trace of gravel and rootlets, humid		\bigotimes				D/E* B D/E			
	- - 1 1.0 -	humid						D/E			
51	- - - -	SAND - loose to medium dense becoming medium dense, yellow brown, fine to medium grained sand, humid						E S			3,3,7 N = 10
	-2							A			
20	-3							s			4,8,14 N = 22
	-										N = ZZ
-4	-			·. · ·							
	- - 4 - - -	- wet below 4.0m				00-00-13 ↓ ↓ ↓					
48-	- - - 4.8							s			4,6,20 N = 26
47	- 4.9 -5 - - - - -	SANDSTONE - extremely low strength, light grey and orange brown, fine to medium grained sandstone SANDSTONE - high strength, moderately then slightly weathered, slightly fractured and unbroken, light									PL(A) = 1.1 PL(A) = 1.6
46	- 6 - - - - - - -	purple yellow brown and light grey, medium to coarse grained sandstone						с	100	100	PL(A) = 1.4
	-7 - - - - -										PL(A) = 1.4
45	-						7.68m: B10, cly vn				
	-88.0 - - - - - -	Bore discontinued at 8.0m									
43 44	- -9 - - - - -										

RIG: Terrier

CLIENT:

PROJECT:

The University of New South Wales

Proposed Building Upgrade

LOCATION: UNSW, Botany Road, Kensington

DRILLER: Tightsite

LOGGED: SI/AG

CASING: HQ to 4.9m

TYPE OF BORING: Vacuum excavation to 1.4m, solid flight auger to 4.9m, NMLC-Coring to 8.0m

WATER OBSERVATIONS: Free groundwater observed at 4.0m whilst augering

REMARKS: *Environmental sample duplicate BD2/050613, ^surface level interpolated from Dwg No K-FME-2013.0002, Rev A, 31.5.13.

	SAM	PLIN	3 & IN SITU TESTING	LEGEND						
A	Auger sample	G	Gas sample	PID Photo ionisation detec	tor (ppm)					
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is((50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral te	st ls(50) (MPa)			196	Dar	<i>tners</i>
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer ((kPa)		PUUU		Га	
Ď	Disturbed sample	⊳	Water seep	S Standard penetration t	est					
Е	Environmental sample	Ţ	Water level	V Shear vane (kPa)			Geotechnics	Envire	onment	Groundwater

SURFACE LEVEL: 55.2 AHD EASTING: 337086 NORTHING: 6245508.3 DIP/AZIMUTH: 90°/-- BORE No: 2 PROJECT No: 72505.11 DATE: 18 - 20/9/2017 SHEET 1 OF 2

_											
		Description	Degree of Weathering	2	Rock Strength	Fracture	Discontinuities				n Situ Testing
ᆋ	Depth (m)	of		Graphic Log	Et Low Very Low Medium High K High	Spacing (m)	B - Bedding J - Joint	Type	s. %	RQD %	Test Results &
		Strata	H N N N N N N N N N N N N N N N N N N N	U	Ex Lo Very High Ex Hi	V 0.01 0.10 1.00	S - Shear F - Fault	Τy	N N	R ~	Comments
55	0.05	ASPHALTIC CONCRETE		00				A			
Ľ	0.3	ROADBASE - dark grey, sandy fine to medium grained igneous gravel		XX				A*			
	0.6	roadbase (possibly recycled road		XX							
		surface) FILLING - grey-brown, fine to						A			
	-1	medium sand filling with trace fine									
-2	-	gravel and glass fragments, damp									
	-	SAND - medium dense, yellow-brown, medium grained									
Ē	-	sand, damp						A	-		
	-2										
53		 with some dark brown silty sand bands to 2.0m 						s			4,7,7
-	-										N = 14
F - F	-3										
22											
	-										
	- 4								-		
-2	-						Note: Unless otherwise	S			6,11,13 N = 24
							stated, rock is fractured along rough planar		-		
							bedding dipping 0°- 20°				
Ē	-5 5.0										
-22	5.1	SANDSTONE - very low strength, light yellow-brown, medium grained			╌┼┺┿╾┓╴┼╶┼╴	<u> </u>	, 5.18m: B0°- 5°, ro, un,				PL(A) = 0.43
		sandstone					fe stn				
Ē		SANDSTONE - medium strength, slightly weathered, slightly fractured					^L 5.27m: B5°, ro, pl, cln				PL(A) = 0.62
		then unbroken, light yellow-brown			i i i i i i	i ii ii					
F F	- 6	medium grained sandstone. Typically indistinctly bedded with						С	100	92	
49		some distinct ironstained beds									DI(A) = 0.71
	-										PL(A) = 0.71
	.										
ŀ	-7		* *								
-8											
			* *				>>				PL(A) = 0.67
ŀ											
Ē	- 8										
-4-	-										
	.										
Ē								С	100	100	PL(A) = 0.94
											0.07
- F	-9										
46	-										
Ē		9.47-9.7m: ironstained cross					9.47m: B5°, he, fe stn				PL(A) = 0.91
}	:	bedding at 70°- 45°									
Ŀ	-			• • • • • •							

RIG: DT100

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: SS

LOGGED: ARM/RMM CASING: HW to 2.5

TYPE OF BORING: Diatube to 0.05m; Non-destructive drilling to 1.9m; Solid flight auger (TC-bit) to 2.0m; Rotary to 5.1m; NMLC-Coring to 19.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD1/20170918 taken at 0.3m to 0.4m

SAN	/PLIN	G & IN SITU TESTING	G LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	I Dolidiae Partner
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetration test	
E Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwate

SURFACE LEVEL: 55.2 AHD EASTING: 337086 NORTHING: 6245508.3 DIP/AZIMUTH: 90°/-- BORE No: 2 PROJECT No: 72505.11 DATE: 18 - 20/9/2017 SHEET 2 OF 2

		Description	Degree of Weathering Uga	Rock	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
R	Depth (m)	of	vveatnering i de o	Strength Magh High High High High High High High Hi	Spacing (m)	B - Bedding J - Joint				Test Results
	(m)	Strata	Grade and the second se	Ex Low Very Low Medium Very High Ex High	0.05 0.10 0.50 1.00	S - Shear F - Fault	Type	Core Rec. %	RQ %	& Comments
45		SANDSTONE (continued)								
	- 10.00 - - 11 - -	SANDSTONE - medium strength, fresh, slightly fractured, light grey medium and fine grained sandstone. Typically indistinctly bedded				10.63m: Ds, 30mm 11.46m: B5°, ro, pl, cly				PL(A) = 0.71
43	- 11.68 - 11.88 - 12 -	SILTSTONE - low strength, slightly weathered, dark grey siltstone with approximately 30% sandstone beds SANDSTONE - high strength, fresh, unbroken, light grey to grey, medium				vn 11.69m: Ds, 10mm 11.87m: Ds, 10mm	С	100	97	PL(A) = 0.17
42	- 13	and coarse grained sandstone. Typically indistinctly bedded and massive								PL(A) = 1.24
-	- - - - - - - - - - 14					13.48m: Ds, 30mm 13.68m: Ds, 20mm				PL(A) = 0.9
41	- - - - - - - - - - - - - - - - - -						С	100	94	PL(A) = 1.22
	- 13	15.34-15.8m: some distinct siltstone beds				15.09-15.28m: B (x4) 10°, pl, cly, 5mm 15.72m: B10°, pl, he 15.76m: Ds, 20mm				PL(A) = 1.29
39	- - - - - - 17									PL(A) = 1.31
. 38	-			· · · · · · · · · · · · · · · · · · ·		17.63m: Ds, 10mm	С	100	99	PL(A) = 1.52
	- 18 - - - - - - - - - - - - - - - - - - -									PL(A) = 1.25
36	- 19 19.0 - - - - - - - - - -	Bore discontinued at 19.0m - target depth reached								

RIG: DT100

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: SS

LOGGED: ARM/RMM CASING: HW to 2.5

TYPE OF BORING: Diatube to 0.05m; Non-destructive drilling to 1.9m; Solid flight auger (TC-bit) to 2.0m; Rotary to 5.1m; NMLC-Coring to 19.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD1/20170918 taken at 0.3m to 0.4m

	SAM	PLIN	G & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B	Bulk sample	P	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)			126	Partnerg
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dudd	145	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Envir	onment Groundwater
	· · · · ·					-	000000000000000000000000000000000000000		

SURFACE LEVEL: 54.6 AHD EASTING: 337098.7 NORTHING: 6245586 DIP/AZIMUTH: 90°/-- BORE No: 3 PROJECT No: 72505.11 DATE: 21-9-2017 SHEET 1 OF 2

Rock Degree of Weathering Fracture Discontinuities Sampling & In Situ Testing Description Core Strength Water Spacing Depth g Test Results 닙 of High Type RQD % Š Ē B - Bedding J - Joint (m) (m) High NO_ & ð S - Shear F - Fault Very Mediu Very Very Strata 10 20 ES W HW Comments 0.03ASPHALTIC CONCRETE - typically A/E <10mm diameter 0 ROADBASE - dark grey, sandy 0.4 A/E gravel, igneous, angular, up to -45 Note: Unless otherwise 30mm diameter, damp A/E stated, rock is fractured FILLING - light brown to brown, fine along rough planar 1.0 to medium grained sand filling with bedding dipping 0°- 20° traces of fine gravel, damp - grey-brown with trace of A/E 1.5 earthenware fragments from 0.7m -23 SAND - apparently medium dense, yellow-brown medium grained sand, PL(A) = 0.321.87m: B0°, ro, un, fe - 2 damp SANDSTONE - very low strength, 2.06-2.09m: B10°, ro, light yellow-brown, medium grained un, cly, 5mm 2.14m: B5°, ro, un, cly & sandstone PL(A) = 0.48 52 organic material, 5mm 2.22m: Ds, 10mm SANDSTONE - medium strength, slightly weathered, slightly fractured, 2.56-2.58m: B (x2) 5°, С 100 81 light grey, medium grained - 3 ro, un, fe stn sandstone with some ironstaining. 2.68m: B5°, ro, un, cly, Typically indistinctly bedded 5mm 3.16m: B5°, pl, partially he, fe stn 3.52m: J30°, un, ti 3.67 SANDSTONE - low and very low PL(A) = 0.123.68m: B5°, ro, un, fe strength, moderately then slightly stn 4 40 weathered, light grey and grey, fine 13.68m: Ds, 30mm 3.72m: J60°- 70°, ro, un, and medium grained sandstone PL(A) = 0.14SANDSTONE - low strength, slightly cln weathered, slightly fractured, light 3.85m: Ds, 10mm . 20grey, medium grained sandstone. ¹3.9m: J60°- 70°, ro, un, Typically indistinctly bedded l cln 3.93m: Ds, 70mm 5 4.1m: Ds, 10mm 4.22-4.5m: B (x6) un, ti, PL(A) = 0.26fe stn, cly, 5-10mm 5.31 SANDSTONE - high strength, 5.09m: Ds, 10mm PL(A) = 1.42 slightly weathered then fresh, 100 85 5.3m: Cs, 10mm С <u>6</u> slightly fractured, light grey medium 5.71m: B10°, ro, pl, fe and coarse grained sandstone. Typically indistinctly bedded stn 6 PL(A) = 0.086.42m:-6.52m: very low strength 6.41m: Cs, 10mm 48 -6.52m: Cs. 20mm band PL(A) = 1.85- distinctly bedded from 6 54m 7 7 14-7 53m[•] B (x9) 10° PL(A) = 1.33 С 100 24 ro, pl, cln or cbs stn - medium strength from 7.5m PL(A) = 0.62 7.7 SANDSTONE - medium then 7.78m: B5°, ro, un, cln medium to high strength, fresh, 7.93m: Ds, 20mm - 8 slightly fractured to unbroken, light grey to grey, medium grained sandstone with some carbonaceous PL(A) = 0.52flecks. Typically massive -9 8.55m: B0°, ro, un, cly, 5mm 100 С 99 9 9.32m: B0°, ro, un, cly, PL(A) = 1.16 5mm -12

RIG: DT100

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: SS

LOGGED: RMM

CASING: HW to 1.6m

 TYPE OF BORING:
 Solid flight auger (TC-bit) to 0.03m; Non-destructive drilling to 1.5m; Solid flight auger (TC-bit) to 1.6m; NMLC-Coring to 16.0m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

REMARKS:	
REMARNS.	

	SAM		& IN SITU TESTING	I EGE	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 54.6 AHD **EASTING:** 337098.7 **NORTHING:** 6245586 **DIP/AZIMUTH:** 90°/-- BORE No: 3 PROJECT No: 72505.11 DATE: 21-9-2017 SHEET 2 OF 2

_									
		Description	Degree of Weathering Claptic U	Rock Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
Ъ	Dept	th of		Strength by Spacing (m)	B - Bedding J - Joint	e	e%	Δ	Test Results
	(m)	Strata	G G G	Weith High Low Constraints (With High Low Constraints) (Wi	S - Shear F - Fault	Type	Core Rec. %	RQ %	& Comments
44	-	SANDSTONE - medium then medium to high strength, fresh, slightly fractured to unbroken, light grey to grey, medium grained sandstone with some carbonaceous flecks. Typically massive (continued)			10.45m: B0°, ro, un, cln				PL(A) = 0.17 PL(A) = 0.82
F	-11	10.36-10.5m: low strength band							
43	- 12					с	100	99	PL(A) = 0.89
42	-				12.18-12.2m: B (x2) 0°- 10°, pl, ro, cln				PL(A) = 1.16
F	- 13								PL(A) = 1.2
	- - - - - - - - - - - - 14								(, , ,
40	- - - - - - - - - - - - - - - - - - -	SANDSTONE - mealum to high			14.78m: Ds, 40mm	С	100	96	PL(A) = 1.09
	- 15 	strength, fresh, slightly fractured, light grey medium grained sandstone with some medium strength bands. Typically distinctly bedded			15.67m: J30°- 40°, ro, un, cln				PL(A) = 1.21
ŀ	-16 16	Bore discontinued at 16.0m			¬└15.75-15.9m: B (x2) 10°, ┌				PL(A) = 0.76
37	- 17	- target depth reached			ro, pl, cln				
ŀ	-								
-	- 18 - - -								
36	- - - - 19								
35	-								
		· · · · · · · · · · · · · · · · · · ·				-	-		

RIG: DT100

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: SS

LOGGED: RMM

CASING: HW to 1.6m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.03m; Non-destructive drilling to 1.5m; Solid flight auger (TC-bit) to 1.6m; NMLC-Coring to 16.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND A. Auger sample G. Gas sample PID. Photo ionisation detector (ppm) B. Buik sample P. Piston sample P. Piston sample LK. Block sample D. Tube sample (x mm dia.) PL(A) Point load axial test (s(50) (MPa) D. Disturbed sample P. Water seep P. Ocket penetrometer (KPa) D. Disturbed sample P. Water seep S. Standard penetration test E. Environmental sample Water level V. Shear vane (kPa)

BORE: 3	PROJECT: R	ANDWICK	SEPTEMBER 2	2017
	onment / Groundwater	Project No: 72 505-11 BH ID: 8H3 Depth: 16n - 6m Core Box No.: 1/3		
72505.11 RANDWICK	BH3 Start o	t 1.6 m	aport 1	TAK)
3-	1	all is	A CONTRACT	14 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14
4m (1)				
	1.9	6m – 6.0m		

BORE: 3	PROJECT:	RANDWICK	SEPTEMBER 2017							
	ronment / Groundwater	Project No: 72 505- BH 10: 8H3 Depth: Ilm- 16n Core Box No.: 3/3								
IN A										
12										
13.										
14m 15m				K						
11.0m – 16.0m										

SURFACE LEVEL: 51.9 AHD Randwick Campus Redevelopment **EASTING:** 337044.9 Hospital Road and High, Magill and Botany **NORTHING:** 6245563 **DIP/AZIMUTH:** 90°/--

BORE No: 4 PROJECT No: 72505.11 DATE: 19 - 21/9/2017 SHEET 1 OF 2

—				· · · · ·						
		Description	Degree of Weathering 은 _	Rock Strength	Fracture	Discontinuities		. ·	-	n Situ Testing
⊾	Depth (m)	of			Spacing (m)	B - Bedding J - Joint	Type	Sre %	RQD %	Test Results &
		Strata	A M M M M M M M M M M M M M M M M M M M	Ex Low Very Low High Very High Ex High		S - Shear F - Fault	Ty	ပိမ္မိ	R %	& Comments
	0.07	ASPHALTIC CONCRETE (typically <10mm diameter)					A			
 	0.2	ASPHALTIC CONCRETE (typically								
		<20mm diameter)					A	}		
- 13	0.8	ROADBASE - dark grey, angular, igneous gravel typically 40-80mm					Δ			
ĒĒ	-1	diameter, slight hydrocarbon odour					<u> </u>	1		
		FILLING - orange-brown, medium grained sand filling with some								
		sandstone gravel and a trace of clay (ripped sandstone)					A			
20		SAND - pale yellow-brown, fine to					•			
-	-2	medium grained sand, damp					<u> </u>	1		
		2.2m: brown								
	2.6	SAND - medium dense to dense,					<u> </u>			8,14,17
-64		orange, fine to medium sand with				Note: Unless otherwise	S			N = 31
-	-3	some clay, damp				stated, rock is fractured along rough planar				
Į į						bedding dipping 0°- 20°				
	3.5	SANDSTONE - extremely low to		<u> </u>						
F.	3.65	very low strength sandstone				3.75m: B0°, pl, ro, cln				DL(A) = 0.00
48		SANDSTONE - low strength, slightly weathered, fractured to slightly								PL(A) = 0.22
	4.15	fractured, pale brown, medium to coarse grained sandstone				4.12-4.14m: Ds, 20mm, cly				
Ē		SANDSTONE - medium strength,				,	С	100	98	
		slightly weathered then fresh, slightly fractured and fractured,								
47	-5	medium to coarse grained								PL(A) = 0.76
		sandstone - limonite staining to 4.40m	━━━━┫ ःःः]━━━┫		∖ 5.21m: B0°, pl, ro, co,				
ŧ ŀ		5.5m: distinct irregular bedding				sandy clay, 5mm 5.23m: Ds, 15mm, cly				
		dipping 15°- 20°			╎╎┏┛╎╴│	5.71m: B20°, pl, vn, co,				
46	- 6				╺╧┥╎╷╞	5mm sandy cly 5.92m: B20°, pl, ro, stn,				PL(A) = 0.71
Ē					╎╵┖┿┪┝	cly				
		6.4m: indistinct irregular bedding				5.96m: B20°, pl, ro, vn,				
ŧ		dipping 0°- 20°				⁶ .14m: B20°, pl, ro, vn, cly	_			
42	6.91	SANDSTONE - medium strength,					С	100	99	PL(A) = 0.71
		fresh, slightly fractured and unbroken, pale grey, medium to								
		coarse grained sandstone, massive,								
		trace carbonaceous flecks			╎╎╎╏	7.63m: Ds, 15mm sandy				
-4						clay				PL(A) = 0.66
	- 8									() 0.00
							<u> </u>			
Ē										
43										$DI(\Lambda) = 0.05$
	-9						с	100	95	PL(A) = 0.95
E						>>			90	
-4-										
4				1			I			PL(A) = 0.73

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

DRILLER: GM

LOGGED: ARM

CASING: HW to 3.65m

TYPE OF BORING: Diatube to 0.08m; NDD to 1.7m; Solid flight auger (TC-bit) to 3.65m; NMLC-Coring to 17.31m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 4.0 m, screen to 7.0 m, gatic cover at surface, asphalt to 0.2 m, sand & cement to 3.0 m, bentonite to 3.8 m, sand to 7.0 m, bentonite to 8.0 m, NDD = Non-destructive drilling

SAM	IPLIN	G & IN SITU TESTING	i LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1.	Indialas Partners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		D Udyida Fai liicia
D Disturbed sample	⊳	Water seep	S	Standard penetration test	11	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
					_	

SURFACE LEVEL: 51.9 AHD **EASTING:** 337044.9 **NORTHING:** 6245563 **DIP/AZIMUTH:** 90°/-- BORE No: 4 PROJECT No: 72505.11 DATE: 19 - 21/9/2017 SHEET 2 OF 2

		Slieels, Railuwick				90 /				
		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	In Situ Testing
뭑	Depth (m)	of Strata	Degree of Weathering	Strength Composition Composit	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results
41	- 11	SANDSTONE - medium strength, fresh, slightly fractured and unbroken, pale grey, medium to coarse grained sandstone, massive, trace carbonaceous flecks (continued)				10.91-10.94m: Ds, ∖30mm, cly 11.03-11.06m: Ds, 30mm cly	С	100	95	Comments PL(A) = 0.61
40	-12 12.0	SANDSTONE - medium to high strength, fresh, slightly fractured to unbroken, pale grey, medium to coarse grained sandstone, indistinct bedding typically dipping 10°- 20°				12.42m: Ds, 10mm, sandy cly				PL(A) = 0.69
	- 13					13.29-13.31m: 20mm sandy cly 13.51-13.54m: Ds, 30mm, sandy cly	С	100	98	PL(A) = 1.1
37	- 14 - 14.6 - 14.6	SANDSTONE - high then medium strength, fresh, unbroken, pale grey, fine to medium grained sandstone, occasional carbonaceous				14.59-14.64m: Ds, 50mm, sandy cly 14.83m: B0°- 5°, un, sm, vn, cbs				PL(A) = 0.91 PL(A) = 1.33
36	- 16	laminations and flecks					С	100	94	PL(A) = 0.59
32	- 17 17.31	16.78-16.97m: siltstone clasts and laminations, slightly fractured Bore discontinued at 17.31m - target depth reached				16.85m: B10°, un, sm, co, cly, 5-10mm 16.94-16.97m: Ds, 30mm, sandy cly				PL(A) = 0.76
34	- 18									
33	- 19									
33	-									

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: GM

LOGGED: ARM

CASING: HW to 3.65m

TYPE OF BORING: Diatube to 0.08m; NDD to 1.7m; Solid flight auger (TC-bit) to 3.65m; NMLC-Coring to 17.31m

 $\textbf{WATER OBSERVATIONS:} \quad \text{No free groundwater observed whilst augering}$

REMARKS: Well installed, blank to 4.0 m, screen to 7.0 m, gatic cover at surface, asphalt to 0.2 m, sand & cement to 3.0 m, bentonite to 3.8 m, sand to 7.0 m, bentonite to 8.0 m, NDD = Non-destructive drilling

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	P	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLI	< Block sample	U,	Tube sample (x mm dia.)	PL(L	0) Point load diametral test ls(50) (MPa)	1.1	Douolas Pariners
C	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)	/ 🖌	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

BORE: 4	PROJECT: R	ANDWICK	SEPTEMBER 2017						
		Project No: 72 505.1 BH ID: 8H4- Depth: 3.65 - 8.00m Core Box No.: 1							
72505.11 RANDWI									
5m				HURL .					
En Tr									
	3.6	5m – 8.0m							

BORE:	4 PROJE	ECT: RANDWICK	SEP1	EMBER 20	EMBER 2017				
	las Partners	Project No: - BH ID: 6H4 Depth: 13.00 - Core Box No.	17.31m : 3						
	AN AN	-FI							
			- Storals						
r <mark>- (</mark>	E E	0H 17.31m 13.0m - 17.31	1 m						

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

SURFACE LEVEL: 54.6 AHD **EASTING:** 336990.5 **NORTHING:** 6245617.7 **DIP/AZIMUTH:** 90°/-- BORE No: 7 PROJECT No: 72505.11 DATE: 6-10-2017 SHEET 1 OF 3

		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Discontinuities			-	n Situ Testing
!	Depth (m)	of	Weathering ≥ ≥ ≥ ≥ ∞ ∝	raph Log		B - Bedding J - Joint	e	e.	۵.,	Test Result
	(11)	Strata	H H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H M K H	Ģ_	Ex Low Very Low Medum High High High Neat High Neat (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	S - Shear F - Fault	Type	Core Rec. %	a% S	& Comments
-	0.2	FILLING - brown, fine to medium grained sand filling with traces of rootlets, humid		\times			A/E			
	1	SAND - loose to medium dense becoming medium dense, yellow-brown mottled orange-brown fine to medium grained sand, damp					A/E A/E S	,		4,5,5 N = 10
	2							-		
-							s			7,10,10 N = 20
	3	3.5m: becoming orange-brown with				Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 20°				
	4 4 4.1	SANDSTONE - low to medium					S			10/50mm refusal
-		medium to coarse grained sandstone			┙┿┿ <mark>┫</mark> ╎╷╷╎ <mark>╎</mark> ╷╷╷┖┧╎	4.32m: Cs, 10mm				bouncing PL(A) = 0.3
	5 5.09 5.14/	SANDSTONE - low to medium strength, slightly weathered, slightly fractured, orange-brown and light grey, medium to coarse grained sandstone. Bedding typically indistinct and ironstained		~~		4.77m: Cs, 5mm 4.91m: Cs, 20mm 4.95m: Cs, 15mm 5.09m: CORE LOSS:				PL(A) = 0.3 PL(A) = 0.7
-	6	SANDSTONE - medium strength, slightly weathered, slightly fractured to unbroken, orange-brown and light grey, medium to coarse grained sandstone				50mm	С	98	97	PL(A) = 0.7
	7	5.14-5.7m: cross bedding at approximately 40°, bedding typically indistinct								PL(A) = 0.7 PL(A) = 0.8
		7.77-7.94m: extremely low to very								
-	8 7.94 -	low strength ironstained seam SANDSTONE - low to medium strength, slightly weathered, slightly fractured, light grey, medium grained exaddtene. Bedding				7.77m: Ds, 170mm 8.26m: B0°- 10°, un, cly,	с	100	92	PL(A) = 0.2
	9	grained sandstone. Bedding typically indistinct				5mm 8.62m: B0°- 10°, ro, un, cly vn			92	PL(A) = 0.2 PL(A) = 0.
	9.48 -	SANDSTONE - see next page				9.42m: Cs, 60mm				PL(A) = 0.4

TYPE OF BORING: Solid flight auger (TC-bit) to 4.0m; Rotary to 4.1m; NMLC-Coring to 20.47m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Groundwater monitoring well installed (screen 4.0-20.47m; gravel 5.0-20.47m; bentonite 3.5-5.0m; backfill surface to 3.5m with concrete set gatic cover). Groundwater well purged >3 well volumes following installation

SAMP	LIN	G & IN SITU TESTING	LEG	END				
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partner	-
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	Ι.	. 🔪	lininiae Partner	-6
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	/	• •	Budgias raitiici	J
D Disturbed sample	\triangleright	Water seep	S	Standard penetration test	,,			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwa	ater
					 _	_		

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

SURFACE LEVEL: 54.6 AHD **EASTING:** 336990.5 **NORTHING:** 6245617.7 **DIP/AZIMUTH:** 90°/-- BORE No: 7 PROJECT No: 72505.11 DATE: 6-10-2017 SHEET 2 OF 3

	Donth	Description	Weathering	pic –	Rock Strength ভ	Fracture Spacing	Discontinuities			-	n Situ Testing
ž	Depth (m)	of Strata	Degree of Weathering ﷺ ≩ ≩ ≷ ଝ ଝ	Grapt	Strength Very Low Medium Medium Very High High High High High High Kater	0.00 0.100 (W) 0.100 (M)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
44	11 11.12	SANDSTONE - medium strength, slightly weathered to fresh, slightly fractured to unbroken, light grey medium to coarse grained sandstone. Massive with some siltstone flecking to indistinctly bedded with approximately 5% siltstone bands (continued)					10.46m: J15°- 20°, ro, un, cln	С	100	99	PL(A) = 0.84 PL(A) = 0.62
	11.12	SANDSTONE - high strength slightly weathered to fresh, slightly fractured to unbroken, light grey medium to coarse grained sandstone with some low and very high strength bands. Massive with some siltstone flecking, to indistinctly bedded with					11.11m: Ds, 10mm	с	100	99	PL(A) = 3.2 PL(A) = 1.3
	13	approximately 10% siltstone bands					12.44m: Ds, 20mm				PL(A) = 3.5
	-	13.33-13.6m: fine grained band					13.3-13.31m: B (x2) 0°, ro, un, cbs vn 13.61m: Ds, 30mm				PL(A) = 1.9 PL(A) = 0.1
	14						14.58m: B20°, pl, he	с	100	98	PL(A) = 1.8
	15										PL(A) = 1.1
	16						16.32m: J45°, ro, un, cln 16.32-16.34m: B (x2) 5°- 10°, ro, un, cbs vn				PL(A) = 0.7 PL(A) = 1.2
	17	16.95-18.05m: fine grained band with some carbonaceous laminations					17m: Ds, 10mm 17.39m: B0°- 5°, ro, un,	с	100	97	PL(A) = 0.1
	18						cbs vn 17.59m: B0°- 5°, ro, pl, cbs vn 17.9m: B0°- 5°, ro, pl, cbs vn			51	PL(A) = 1.2
-							18.05m: Ds, 20mm 18.39-18.45m: J30°- 60°,un, he, cbs, 1mm 18.77m: Ds, 20mm				PL(A) = 1.4
	19						19.19m: B5°, ro, pl, cln 19.77m: B0°- 5°, ro, un, cbs vn	с	100	100	PL(A) = 1.3

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Groundwater monitoring well installed (screen 4.0-20.47m; gravel 5.0-20.47m; bentonite 3.5-5.0m; backfill surface to 3.5m with concrete set gatic cover). Groundwater well purged >3 well volumes following installation

	SAN	IPLIN	3 & IN SITU TESTING	LEG	END								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)					-			<i>iers</i>
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	11.		niir	19	G		IFTF	10rg
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			Vuy	19	5	– –		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11							
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geo	technics	: I En	ivira	onment	t Gro	undwater
													ananaron

Project No: 72505.11 BH ID: 6H77 Depth: 8m - 13m Core Box No.: 2/4	BORE: 7 PROJE	ECT: RANDWICK	OCTOBER 2017
		6 BH ID: 8/17 Depth: 8/17 Core Box No.: 2/4	
A MARKET AND A MARKET A	COLUMN COLUMN	1	
	$\left\{ \right\}$		

BACCOLOGICAL COLOGICAL
End at 20.47 m

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

SURFACE LEVEL: 54.6 AHD **EASTING:** 336990.5 **NORTHING:** 6245617.7 **DIP/AZIMUTH:** 90°/-- BORE No: 7 PROJECT No: 72505.11 DATE: 6-10-2017 SHEET 3 OF 3

Γ		Description	Degree of Weathering	Rock	د th ب	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
RL	Depth (m)	of Strata	Degree of Weathering	Graph Log Very Low Medium	Water	Spacing (m) 5000000000000000000000000000000000000	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-	-	SANDSTONE (continued)					20.24m: B5°, ro, pl, cln	с		100	
34	20.47	Bore discontinued at 20.47m - target depth reached					_20.42m: J20°, ro, un, cln				PL(A) = 0.88
-	-21										
	-										
33	- 22										
-	- 22										
32	-										
-	-23										
31 - 1	-										
-	- 24										
-	-										
- 08	-										
-	- 25										
29	-										
-	- 26										
-	-										
28	-										
-	- 27										
27	-										
-	- 28										
	-										
26	- 20										
ŀ	- 29										
25	-										
Ŀ						GED: RMM	CASING		0m:		
	G: DT10 'PE OF E	BORING: Solid flight auger (TC-bi	LER: RKE t) to 4.0m; Ro	otary to 4.1m;			CASING: HW 47m	10 4.	.011,	1 1 2 ((J 4. IIII

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Groundwater monitoring well installed (screen 4.0-20.47m; gravel 5.0-20.47m; bentonite 3.5-5.0m; backfill surface to 3.5m with concrete set gatic cover). Groundwater well purged >3 well volumes following installation

	SAM	PLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)	1.	I DALIAISE PSTTAERE
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dugias rai licis
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
						 _	

 SURFACE LEVEL:
 50.5 AHD

 EASTING:
 337038.1

 NORTHING:
 6245507

 DIP/AZIMUTH:
 90°/-

BORE No: 8 PROJECT No: 72505.11 DATE: 23 - 24/1/2018 SHEET 1 OF 2

$\left[\right]$	_	Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	<u>io</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
ᆋ	Depth (m)	of		raph Log	Ex Low Very Low Medium High Very High Ex High 0.01	Spacing (m)	B - Bedding J - Joint	Type	Sre : %	RQD %	Test Results &
	()		HW HW SW FR SW	G	Ex Low Low High Ex High		S - Shear F - Fault	Ţ	N N	<u>я</u> ~	Comments
	0.1	ASPHALTIC CONCRETE (typically		Э. Ċ							
	0.25	ROADBASE - dark grey, angular,		\bigotimes		ii ii		A			
-23	0.6	the second second to be a second seco		\sim				A*	1		
		FILLING - pale grey and brown							1		
	-1	sandstone gravel and cobbles up to 100mm diameter (ripped sandstone)									
		SAND - pale brown, medium									
-64-		grained sand with a trace of fine gravel, damp						A			
		gratol, damp						<u> </u>	1		
	- 2										
							Note: Unless otherwise stated, rock is fractured				
-8-	2.6	SANDSTONE - extremely low		· · · · ·			along rough planar	S	-		7,10/10mm refusal
	2.77	strength, orange-brown sandstone /					bedding dipping 0°- 20°				
ŧ [- 3	SANDSTONE - low to medium strength, slightly weathered,									PL(A) = 0.26
		fractured to slightly fractured, orange		· · · · · · · · · · · · · · · · · · ·				с	100	100	
47		and grey, medium to coarse grained sandstone				ii i					
				· · · · · · · · · · · · · · · · · · ·			3.71m: B15°, vn, cly				
	-4			· · · · · · ·							PL(A) = 0.43
							4.15m: B10°, vn, cly				
-9				· · · · · · · · · · · · · · · · · · ·			4.38m: B20°, co, cly, 2mm				
				· · · · · · · · · · · · · · · · · · ·			4.61m: B20°, co, sandy cly, 1mm				
ĒĒ	- 5			· · · · · · · · · · · · · · · · · · ·			4.64m: B15°, co, cly,				PL(A) = 0.6
				· · · · · · · · · · · · · · · · · · ·			2mm 4.72m: B0°, sm, co, cly,				
-45	5.45	SANDSTONE - high then medium		· · · · · ·			3mm	С	100	95	
		strength, fresh, slightly fractured to unbroken, pale grey, medium to									
	- 6	coarse grained sandstone with a trace of carbonaceous flecks		· · · · · · · · · · · · · · · · · · ·							PL(A) = 1.12
		trace of carbonaceous fiecks		· · · · · · · · · · · · · · · · · · ·							
-4-		6.4-6.9m: red-brown iron staining					6.49m: B0-5°, cu, co,				
ĒĒ				· · · · · · · · · · · · · · · · · · ·	╎╎╠╅		∖ cly, 10mm				
	-7						6.69-6.76m: J50°, un, ro, vn, fe				PL(A) = 0.69
				· · · · · · · · · · · · · · · · · · ·							
-4-											
						ii ii					
	- 8			· · · · · · · · · · · · · · · · · · ·							PL(A) = 0.63
 		8.1-8.55m: low strength band									
-4-							>>	с	100	100	PL(A) = 0.22
`				::::							
Ē	- 9										PL(A) = 0.63
ŧ											
Ę											
4	•										
											PL(A) = 1.03

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: GM

LOGGED: ARM

CASING: HW to 2.5m; HQ to 2.7m

TYPE OF BORING: Diatube to 0.10m; Non-destructive drilling to 1.7m; Solid flight auger (TC-bit) to 2.77m; NMLC-Coring to 17.39m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 2.0 m, screen to 3.0 m, gatic cover at surface, asphalt to 0.2 m, sand & cement to 0.8 m, bentonite to 1.5 m, sand to 3.0 m, bentonite to 3.5 m, *BD1/20180123 replicate taken at 0.4m to 0.5m

SAM	IPLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1.7	I DALIAISE PSTTAFE
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
 · · · · ·					 _	

BORE: 8	PROJEC	T: RANDWICK	JANUARY 2018
Geotechnics Environmen		Project No: 72505.1(BH ID: 6#8 Depth: 277-7.00m Core Box No.: 1	
72505.11 RANDWICK	BH8 24/1/1	8 START 2.77m	
3	THE L		
5-10-00		K	
6	2	.77m – 7.0m	

BORE: 8	PROJECT:	RANDWICK	JANUARY 2018
		Project No: 72505.1 BH ID: 015 Depth: 0.55-E of m Core Box No.:	
7	E	0H 17.39m	

SURFACE LEVEL: 50.5 AHD **EASTING:** 337038.1 **NORTHING:** 6245507 **DIP/AZIMUTH:** 90°/-- BORE No: 8 PROJECT No: 72505.11 DATE: 23 - 24/1/2018 SHEET 2 OF 2

			Deerse	1	Book			1			
	Depth	Description	Degree of Weathering	in the second se	Rock Strength	Fracture Spacing	Discontinuities			-	n Situ Testing
뭑	(m)	of	Weathering	Log	Prevention of the second secon	(m)	B - Bedding J - Joint	Type	Core Rec. %	åD %	Test Results &
		Strata	FR S & FR	Very Kery	Higt Ker	0.01 0.10 0.50	S - Shear F - Fault				Comments
39	10.41 - 11 - 11.45 - 12	10.2-10.41m: with 25% siltstone clasts up to 20mm diameter, fragmented (possibly drilling induced) LAMINITE - low strength, fresh, slightly fractured, dark grey siltstone interlaminated and interbedded with 40% pale grey, fine grained sandstone SANDSTONE - high strength, fresh, slightly fractured to unbroken, pale grey, medium to coarse grained sandstone, massive					10.14-10.41m: fg, 270mm 10.41m: B0°, sm, co, cly, 5mm 10.73m: J35°, sm, co, cly, 1mm 11.04m: J30°x2, sm, vn, cly 11.38-11.45m: J30-45°x3, sm, vn, cly 11.57m: B0°, vn, cly 11.78m: B0°, vn, cly	С	100	88	PL(A) = 0.18 PL(A) = 2.23
-8				· · · · · · · · · · · · · · · · · · ·							PL(A) = 1.54
	- 13	12.84-13.03m: with 50% carbonaceous laminations \13.03-13.21: fine to medium grained					12.79m: Ds, 20mm, ∖ sandy cly ∖ 12.96m: Ds, 20mm, ∖ sandy cly				(,,)
37		13.21m: medium to coarse grained, irregular bedding dipping 10-20°		· · · · · · · · · · · · · · · · · · ·			13.21m: B10°, vn, cly				
	- 14			· · · · · · · · · · · · · · · · · · ·			13.97m: Ds, 15mm, cly				PL(A) = 1.19
- <u>9</u> 6				· · · · · · · · · · · · · · · · · · ·			14.38m: B20°, vn, cly	С	100	99	
35	- 15	14.8m: massive									PL(A) = 1.27
	- 16										PL(A) = 1.36
-2	· · ·	16.44m: irregular bedding dipping 10-20°		· · · · · · · · · · · · · · · · · · ·			16.44m: B0-10°, cu, co, sandy cly, 10mm	с	100	99	
	- 17						_ 17.29m: B20°, vn, cly ∠				PL(A) = 1.57
33.	17.39	Bore discontinued at 17.39m - target depth reached									
	- 18										
32											
	- 19										
31 -											
ŀ						li ii ii					

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: GM

LOGGED: ARM

CASING: HW to 2.5m; HQ to 2.7m

TYPE OF BORING: Diatube to 0.10m; Non-destructive drilling to 1.7m; Solid flight auger (TC-bit) to 2.77m; NMLC-Coring to 17.39m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 2.0 m, screen to 3.0 m, gatic cover at surface, asphalt to 0.2 m, sand & cement to 0.8 m, bentonite to 1.5 m, sand to 3.0 m, bentonite to 3.5 m, *BD1/20180123 replicate taken at 0.4m to 0.5m

	SAMF	PLING	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)	1.	I DAlidiae Parthere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dugias rai licis
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
						 _	

CLIENT:LendLease Building Pty LtdPROJECT:Randwick Campus RedevelopmentLOCATION:Hospital Road and High, Magill and Botany
Streets, Randwick

SURFACE LEVEL: 55.7 AHD **EASTING:** 337090 **NORTHING:** 6245535 **DIP/AZIMUTH:** 90°/-- BORE No: 12 PROJECT No: 72505.13 DATE: 30-4-2018 SHEET 1 OF 2

		Description	Weathering	<u>ic</u>	Rock Strength ក្រ	Fracture	Discontinuities				n Situ Testing
	Depth (m)	of		raph Log	Strength High diameter Nater	Spacing (m)	B - Bedding J - Joint	e	e %.	Q.,	Test Resul
	,	Strata	Degree of Weathering ﷺ ≩ ≩ ਨੇ የ ਦ	Ū	Ex Low Very Low Medium High Very High Ex High	0.01 0.10 0.50 1.00	S - Shear F - Fault	Type	ပြီးမွိ	RQD %	& Comment
-	0.09	ASPHALTIC CONCRETE		0'. i				D			
-	0.6	ROADBASE: dark grey, sandy fine to coarse grain igneous gravel, damp		, 0 . 4 . 0 . 4							
- - - 1	-	FILLING: brown, medium to coarse sand filling, with some silt, damp 0.8-1.2m: with some roots.		\bigotimes				D			
	1.2	SAND: medium dense, yellow		$\times \times$							
		brown, medium sand with trace of silt, damp						s			2,7,9
2	2								-		N = 16
3	5										F 40 4-
								S			5,10,13 N = 23
4	+										
								s			6,11,13 N = 24
5	5										
- 6	;										11/110
0	, 6.1 -	SANDSTONE: high strength, slightly weathered becoming fresh, slightly fractured to unbroken, pale						S			refusal
7	,	grey, medium to coarse grained sandstone, some iron staining									PL(A) = 2.
									400	100	
							7.44m: B5⁰, pl, ro, cly ∖5mm √7.6m: Ds, 50mm	С	100	100	PL(A) = 2.
8	3										
9	8.8	SANDSTONE: high strength, fresh, unbroken, pale grey, medium									PL(A) = 1.
		grained sandstone						с	100	100	
											PL(A) = 1

TYPE OF BORING: Diatube to 0.09 m, NDD to 1.5 m, Solid flight auger (TC-bit) to 4.0 m, Rotary to 6.1 m, HQ-Coring to 14.15 m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 3.8 m, screen to 6.8 m, gatic cover at surface, concrete to 0.2 m, sand & cement to 2.0 m, bentonite to 3.0 m, sand to 6.8 m, bentonite to 7.8 m, sand to 14.15 m

	SAM	PLIN	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Partners
BL	Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)	1		26	Darthorg
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Duddi	a 5	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	'''			
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics	Fnvire	onment Groundwater
	· · ·								

CLIENT:LendLease Building Pty LtdPROJECT:Randwick Campus RedevelopmentLOCATION:Hospital Road and High, Magill and Botany
Streets, Randwick

SURFACE LEVEL: 55.7 AHD **EASTING:** 337090 **NORTHING:** 6245535 **DIP/AZIMUTH:** 90°/-- BORE No: 12 PROJECT No: 72505.13 DATE: 30-4-2018 SHEET 2 OF 2

Π		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ፼ ∰	υ	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
ᆋ	Depth (m)	of	weathering	aphi -og	Strendth Very Low Medium Very High Vater Vater	Spacing (m)	B - Bedding J - Joint				Test Results
	(11)	Strata	M H M M S H	Ω_	Ex Lov Very L Mediu Ex High	0.100	S - Shear F - Fault	Type	Re C	RQD %	& Comments
45	- 11	SANDSTONE: high strength, fresh, unbroken, pale grey, medium grained sandstone <i>(continued)</i>						С	100		PL(A) = 2.54
44	-			· · · · · · · · · · · · · · · · · · ·							PL(A) = 0.93
	- 12			· · · · · · · · · · · · · · · · · · ·				с	100		PL(A) = 1.33
	-							С	100	100	
43	- 13							С	100	100	
42	-	13.57m: becoming slightly fractured					13.57m: B5° pl, ro, cly				PL(A) = 1.2
	- - - 14						vn				PL(A) = 1.04
	14.15	Bore discontinued at 14.15m		:::::							,
	-	Target depth reached									
41	- 15										
40	- 16										
39	-										
	- 17										
38											
	- 18										
	-				i i i i i i i						
37	-										
	- 19										
36					iiiii						
Ŀ	-										

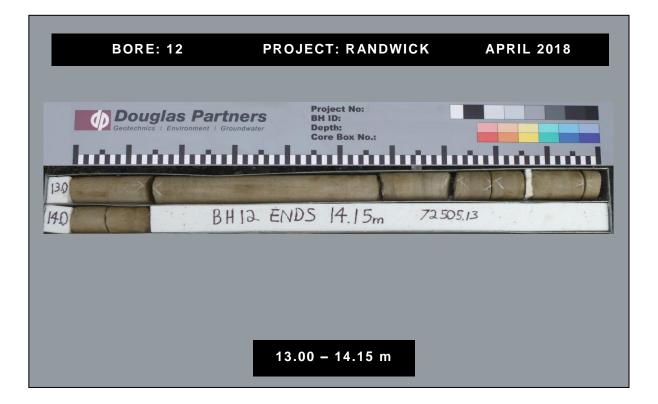
RIG: Han Jin 8D

DRILLER: BG Drilling

LOGGED: JAP

CASING: HW to 5.5 m

TYPE OF BORING: Diatube to 0.09 m, NDD to 1.5 m, Solid flight auger (TC-bit) to 4.0 m, Rotary to 6.1 m, HQ-Coring to 14.15 m


WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 3.8 m, screen to 6.8 m, gatic cover at surface, concrete to 0.2 m, sand & cement to 2.0 m, bentonite to 3.0 m, sand to 6.8 m, bentonite to 7.8 m, sand to 14.15 m

		SAMP	LIN	3 & IN SITU TESTING	LEG	END					
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)					
B	Bulk sample		Р	Piston sample) Point load axial test Is(50) (MPa)		_		Douglas Part	
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)				Dollalas Part	ners
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)				Budgias raiti	11613
D	Disturbed sample		\triangleright	Water seep	S	Standard penetration test		' /		-	
E	Environmental sa	mple	Ŧ	Water level	V	Shear vane (kPa)		-		Geotechnics Environment Gr	oundwater
•							-	_	_		o ama marter

RANDWICK	APRIL 2018
ct No: : i: Box No.:	
10 m	
	9.00 m

BORE: 12	PROJECT: RANDWICK	APRIL 2018
	Project No:	
Geotechnics I Environmen	Groundwater BH ID: Depth: Core Box No.:	
9.0		
0.0		
0		
	9.00– 13.00 m	
	3.00-13.00 m	

SURFACE LEVEL: 52.0 AHD **EASTING:** 337045 NORTHING: 6245565 **DIP/AZIMUTH:** 90°/--

BORE No: 13 **PROJECT No:** 72505.13 **DATE:** 3-5-2018 SHEET 1 OF 1

			Degree of		Rock	– (D : <i>I</i> : <i>I</i> :	-		•	01 T "
	Depth	Description	Weathering	g g	Rock Strength unit Mol Mol Mol Mol Mol Mol Mol Mol Mol Mol	Fracture Spacing	Discontinuities				n Situ Testing
ᆋ	(m)	of		Grap	Strength High High And And And And And And And And And And	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	č. %	RQD %	Test Results &
8	0.05	Strata	HW SW FR FR	~	High Kery Very Kery Ex H	0.05				Ľ.	Comments
	0.05 0.11 [/]	ASPHALT: (typically <10 mm diameter)		Р́Ч							
	0.4	ASPHALT: (typically <20 mm diameter)		i oʻ . XX							
· -	0.6	ROADBASE: dark grey, angular									
- 2-	0.9	igneous gravels (30-80 mm) FILLING: grey-brown, ripped									
		sandstone filling, (40-80mm) FILLING: orange brown, medium									
		sandy gravel filling with some coarse sandstone gravel, damp									
20	2	SAND: medium dense, pale yellow, medium sand, damp						s			2,6,9 N = 15
									-		N - 15
	2.5	SAND: medium dense to dense,									
		brown orange, fine to medium sand with some silt, damp									
46								D S	1		14,8/80
	3.2	SANDSTONE: extremely low to very						_	1		refusal
.		low strength, orange brown sandstone									
	3.8	Bore discontinued at 3.8m									
48	4	Limit of investigation									
-	_										
4	5										
46	6										
4	5										
42	7										
					i i i i i i	ii ii					
. [
					i i i i i i i						
4	8				i i i i i i i						
-			<u>iiii</u>		iiiiii	ii ii					
43	9										
.											
			<u>iiiii</u>		iiiiii	ii ii					

RIG: Han Jin 8D TYPE OF BORING: Diatube to 0.15 m, Non-destructive drilling to 1.6 m, solid flight auge (TC-bit) to 3.8 m

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

DRILLER: BG Drilling

LOGGED: JAP

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 1.3 m, screen to 3.8 m, gatic cover at surface, asphalt to 0.2 m, sand & cement to 0.4 m, bentonite to 1.0 m, sand to 3.8 m

SAN	/IPLIN	G & IN SITU TESTING	LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Pa	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1.1		rtnere
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Budyids ra	
D Disturbed sample	⊳	Water seep	S	Standard penetration test			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment	Groundwater
					 _		, ereananater

CLIENT: LendLease Building Pty Ltd PROJECT: Randwick Campus Redevelopment LOCATION: Hospital Road and High, Magill and Botany Streets, Randwick

SURFACE LEVEL: 55.2 AHD **EASTING:** 336986 **NORTHING:** 6245643 **DIP/AZIMUTH:** 90°/--

BORE No: 16 PROJECT No: 72505.13 **DATE:** 8-5-2018 SHEET 1 OF 1

\square			Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	0	Rock		Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
님		pth	of	vveainering	inde og	Strength	Water	Spacing	B - Bedding J - Joint	Ð	ø%	RQD %	Test Results
	(n	n)	Strata	H M M M M M M M M M M M M M M M M M M M	5 –	Ex Low Very Low Medium High Very High Ex High	V 10.0	0.05 0.100 1.00 1.00 (W)	S - Shear F - Fault	Type	ပ် ပွဲ	RQI %	& Commonto
\vdash				回己を必定罪	X. 7		6	-10 00					Comments
55	-	0.12	FILLING: brown, fine to medium sand filling with some silt and trace of igneous gravel, humid										
	- - - 1		SAND: yellow, fine to medium sand, damp										
	-												
53	-2	2.0-	SAND: medium dense, yellow, fine to medium sand, damp							s	-		4,9,11 N = 20
52	- 3	3.2-	SAND: medium dense, brown, fine to medium sand with trace of clay,								-		
	-		damp							s			7,9,20 N = 29
51	-4	4.1	SANDSTONE: very low strength, orange-brown and light grey, medium to coarse grained sandstone							S			6/30, Bouncing
20	- 5	4.7	Bore discontinued at 4.7m Limit of investigation		<u>,,,,,</u>								
49	- 6												
	- 7												
48	-												
47	- 8												
46	- 9												
	-												

RIG: Han Jin 8D

DRILLER: BG Drilling

LOGGED: JAP

CASING: HW to 4.0 m TYPE OF BORING: Diatube to 0.12 m, Non-destructive drilling to 1.8 m, solid flight auger (TC-bit) to 2.0 m, Rotary to 4.7 m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 2.1 m, screen to 4.7 m, gatic cover at surface, concrete to 0.2 m, sand & cement to 1.2 m, bentonite to 2.0 m, sand to 4.7 m

	SAN	IPLINC	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)			DAURISE PSTARE
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
							_	

CLIENT:LendLease Building Pty LtdPROJECT:Randwick Campus RedevelopmentLOCATION:Hospital Road and High, Magill and Botany
Streets, Randwick

SURFACE LEVEL: 55.2 AHD **EASTING:** 336983 **NORTHING:** 6245644 **DIP/AZIMUTH:** 90°/-- BORE No: 17 PROJECT No: 72505.13 DATE: 8-5-2018 SHEET 1 OF 2

	D 11	Description	Degree of Weathering	≧Rock	Fracture	Discontinuities				n Situ Testing
Ę	Depth (m)	of	Weathering	Strength Extended Median Me	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	0 %	Test Results &
		Strata	N N N N N N N N N N N N N N N N N N N	Ciap Lov Very Low Medium High Ex High	0.1050.0500.1000.10000.10000.10000.10000.10000.100000.1000000	S - Shear F - Fault	Ļ	й ў	Ϋ́	Comments
8-	0.11	CONCRETE SLAB FILLING: brown, fine to medium sand filling with some silt and trace of igneous and sandstone gravel, humid								
t	1	SAND: yellow-brown, fine to medium sand, damp								
	2 2.0	SAND: medium dense yellow-brown fine to medium sand, damp					S			4,6,9 N = 15
76	3 3.3	SAND: medium dense, brown, fine to medium sand with trace of clay, damp					S			9,10,14 N = 24
	4									N - 24
	4.4	SANDSTONE: very low to low strength, orange-brown and light grey, medium to coarse grained sandstone								
R	5.08	SANDSTONE: medium strength, slightly weathered, slightly fractured, light grey and red-brown, medium to coarse grained sandstone				5m: CORE LOSS: 80mm 5.13m: J25° pl, ro, cln	С	90	83	
	6					6.05m: J20° pl, ro, fe, stn				PL(A) = 0.6 PL(A) = 0.8
	8					7.54-7.57m: B5-10°, he, cu, ro, fe, stn x2 7.92-8.05m: B0-10°, pl, ro, fe, stn x3 8m: J30°, pl, ro 8.31m: Ds, 110mm	С	100	100	PL(A) = 1.1
	9									PL(A) = 0.5
	9.5	SANDSTONE (see over page)				9.32-9.50 m: B0-10°, un, ro fe, stn x5 9.36m: Cs, 20mm	С	100	90	PL(A) = 0.5

RIG: Han Jin 8D

DRILLER: BG Drilling

LOGGED: JAP

CASING: HW to 4.5 m

TYPE OF BORING: Diatube to 0.11 m, Non-destructive drilling to 1.8 m, Auger to 2.0 m, Rotary to 5.0 m, NMLC Coring to 14.80 m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 5.1 m, screen to 9.6 m, gatic cover at surface, concrete to 0.2 m, sand & cement to 1.5 m, sand to 4.0 m, bentonite to 5.0 m, sand to 10.0 m, bentonite to 11.0 m, sand to 15.0 m

SAM	PLIN	G & IN SITU TESTING	3 LEG!	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample		 Point load axial test Is(50) (MPa) 		Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	1.1	I Dollalas Partners
C Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)		Dugias rai licis
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
					 _	

SURFACE LEVEL: 55.2 AHD **EASTING:** 336983 **NORTHING:** 6245644 **DIP/AZIMUTH:** 90°/-- BORE No: 17 PROJECT No: 72505.13 DATE: 8-5-2018 SHEET 2 OF 2

	Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities		_		n Situ Testing
Depth (m)	of	raph .	Log Kery Low Medium Very High Kery High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
		M H M S S S E E O	Low Very Very Ex H	0.01	S - Shear F - Fault	ŕ	QĂ	Ψ,	Comments
11	SANDSTONE: medium strength, fresh, slightly fractured to unbroken, light grey, fine to medium grained sandstone with some low strength bands, cross bedding at 10-15° (continued)				10.69m: Ds, 10mm	С	100	90	PL(A) = 0.8 PL(A) = 0.12
12									PL(A) = 0.39
12.24	<u> </u>				11.99-12.09m: J60°, pl, ro, cln				
13	SANDSTONE: medium and high strength, fresh, unbroken, light grey, medium grained sandstone				12.41m: J20°, pl, ro, cln				PL(A) = 1.38
			<u>∶</u>						
						С	100	100	PL(A) = 0.69
14									
14.8									PL(A) = 1.16
15	Bore discontinued at 14.8m Target depth reached								
16									
17									
18									
-									
19									
19									
i Han J					CASING: HW	/ to 4	<u> </u>		

RIG: Han Jin 8D

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

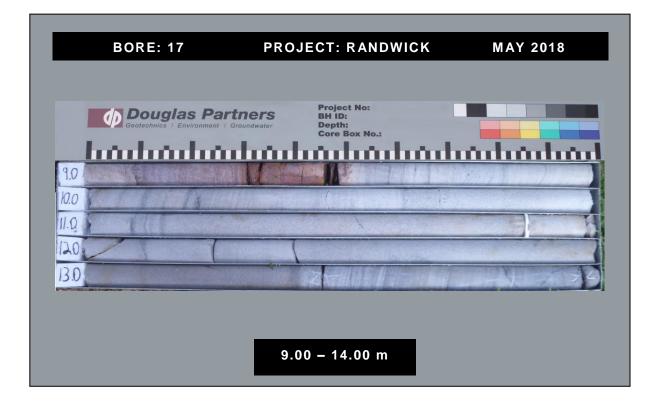
Randwick Campus Redevelopment

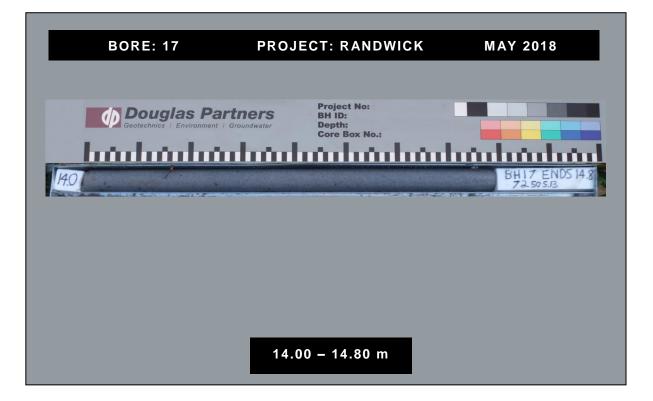
Hospital Road and High, Magill and Botany

DRILLER: BG Drilling

LOGGED: JAP

CASING: HW to 4.5 m $\,$


TYPE OF BORING: Diatube to 0.11 m, Non-destructive drilling to 1.8 m, Auger to 2.0 m, Rotary to 5.0 m, NMLC Coring to 14.80 m


WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Well installed, blank to 5.1 m, screen to 9.6 m, gatic cover at surface, concrete to 0.2 m, sand & cement to 1.5 m, sand to 4.0 m, bentonite to 5.0 m, sand to 10.0 m, bentonite to 11.0 m, sand to 15.0 m

		SAMP	LIN	3 & IN SITU TESTING	LEG	END				
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)				
B	Bulk sample		Р	Piston sample		A) Point load axial test Is(50) (MPa)				Douglas Partners
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		1.		DAURIAS Partners
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)				Dugias rai liicis
D	Disturbed sample		\triangleright	Water seep	S	Standard penetration test		17		
E	Environmental sar	mple	Ŧ	Water level	V	Shear vane (kPa)				Geotechnics Environment Groundwater
•							_		_	

Project No: BH ID: Depth: Core Box No.:	
BHIZ START 5.0 m	
and the second second	1 · · · · · · · · · · · · · · · · · · ·
11-11-1	
	Depth: Core Box No.:

SURFACE LEVEL: 51.9 AHD **EASTING:** 337044.9 **NORTHING:** 6245563 **DIP/AZIMUTH:** 90°/--

BORE No: 4 (72505.11) PROJECT No: 72505.13 DATE: 19 - 21/9/2017 SHEET 1 OF 1

		Streets, Randwick					1. 90 /		SHEET I OF I	
_		Description	jc		Sam		In Situ Testing	Ļ	Well	
	epth (m)	of	Graphic Log	e	xth	Sample	Resulte &	Water	Constructio	on
	,	Strata	Q_	Type	Depth	Sam	Results & Comments	>	Details	
	0.04	ASPHALTIC CONCRETE (typically <10mm diameter)	k X	A	0.07 0.15				Gatic Cover	
	0.2	ASPHALTIC CONCRETE (typically <20mm diameter)		A	0.5					
<u>5</u> -1	0.8-	ROADBASE - dark grey, angular, igneous gravel typically 40-80mm diameter, slight hydrocarbon odour		A	0.6 0.9 1.0				-1	
⁶⁶ -2		FILLING - orange-brown, medium grained sand filling with some sandstone gravel and a trace of clay (ripped sandstone)		 A	1.4 1.6 1.9 2.0				Backfill - -2	
⁶⁰ 4-3	2.6 -	SAND - pale yellow-brown, fine to medium grained sand, damp 2.2m: brown		S	2.5 2.95		8,14,17 N = 31		- 3 Bentonite -	
⁸ ⁸ 4	3.5 3.65 4.15	SAND - medium dense to dense, orange, fine to medium sand with some clay, damp			3.65 3.9		PL(A) = 0.22		-4	40
	4.15	SANDSTONE - extremely low to very low strength sandstone		С						00000
4-5		SANDSTONE - low strength, slightly weathered, fractured to slightly fractured, pale brown, medium to coarse			4.95 5.29		PL(A) = 0.76		-5 Gravel -	
6 46		grained sandstone SANDSTONE - medium strength, slightly weathered then fresh, slightly fractured and fractured, medium to coarse grained sandstone			5.93		PL(A) = 0.71		Screen 4-7m ⁷ 6	00000 11111111111111111111111111111111
²⁶ 7	6.91 -	- limonite staining to 4.40m 5.5m: distinct irregular bedding dipping 15°- 20°		С	6.95		PL(A) = 0.71		7	000
4-8		6.4m: indistinct irregular bedding dipping 0°- 20° SANDSTONE - medium strength, fresh, slightly fractured			7.95		PL(A) = 0.66		Bentonite -	-
4 9		and unbroken, pale grey, medium to coarse grained sandstone, massive, trace carbonaceous flecks			8.38 8.95		PL(A) = 0.05			
					0.90		PL(A) = 0.95		-9	
⁸ 10				С	9.95		PL(A) = 0.73		10	
1 + 11					10.88		PL(A) = 0.61		- 11	
9 12	12.0 -				11.39		PL(A) = 0.69		- 12	
Ē		SANDSTONE - medium to high strength, fresh, slightly fractured to unbroken, pale grey, medium to coarse								0000
[®] - 13		grained sandstone, indistinct bedding typically dipping 10°- 20°		С	12.95		PL(A) = 1.1		Backfill -	0,00,00 0,00,00 0,00,00 0,00,00
[%] 14					13.95		PL(A) = 0.91		- 14	0.00
^{€6} - 15	14.6 -	SANDSTONE - high then medium strength, fresh, unbroken, pale grey, fine to medium grained sandstone, occasional carbonaceous laminations and flecks			14.37		PL(A) = 1.33		15	0,000 0,000 0,000 0,000
[%] 16	;			С	15.93		PL(A) = 0.59		- 16	0,00,00 0,00,00 0,00,00,00
-96 - 17	17.31 -	16.78-16.97m: siltstone clasts and laminations, slightly			17.04 -17.31-		PL(A) = 0.76		- 17	
ਲ ਇ		Bore discontinued at 17.31m - target depth reached	_		17.01				- 18	
<u>- </u>									ŀ	

 RIG:
 Bobcat
 DRILLER:
 GM
 LOGGED:
 ARM
 CASING:
 HW to 3.65m

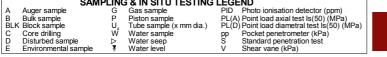
 TYPE OF BORING:
 Diatube to 0.08m; NDD to 1.7m; Solid flight auger (TC-bit) to 3.65m; NMLC-Coring to 17.31m
 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 CASING:
 Variant of the second se

SAMPLING & IN SITU TESTING LEGEND

CLIENT:

PROJECT:


LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

SURFACE LEVEL: 50.5 AHD **EASTING:** 337038.1 NORTHING: 6245507 **DIP/AZIMUTH:** 90°/--

BORE No: 8 (72505.11) PROJECT No: 72505.13 **DATE:** 23 - 24/1/2018 SHEET 1 OF 1

		Slieels, Randwick					90 /		SHEET I OF	1
	Donth	Description	hic		San		n Situ Testing	<u>ت</u>	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construc	
H	0.1					ő			- Gatic Cover	े सम्ब र्गाले
- 3	0.25	ASPHALTIC CONCRETE (typically <10mm diameter)	\mathbb{X}	<u> </u>	0.4				Backfill	
5	0.6 - 1	ROADBASE - dark grey, angular, igneous gravel typically		A	0.5 0.6 0.7				-1	
49		FILLING - pale grey and brown sandstone gravel and cobbles up to 100mm diameter (ripped sandstone)			1.6				Bentonite	
	-2	SAND - pale brown, medium grained sand with a trace of fine gravel, damp			1.7		7,10/10mm		-2 Gravel	
4	2.6 2.77	¬ SANDSTONE - extremely low strength, orange-brown //		S	2.5 2.66		refusal		Screen 2-3m	
Ē	-3	sandstone		с	2.77 2.95		PL(A) = 0.26		- 3 Bentonite	
4		SANDSTONE - low to medium strength, slightly weathered, fractured to slightly fractured, orange and grey,								0,00
	-4	medium to coarse grained sandstone			3.88 3.91		PL(A) = 0.43		- 4	0.00
4									-	00.00
ĒĒ	-5				4.95		PL(A) = 0.6		-5	
5	5.45			с						
1		SANDSTONE - high then medium strength, fresh, slightly fractured to unbroken, pale grey, medium to coarse			5.95		PL(A) = 1.12		Le c	
Ē	-6	grained sandstone with a trace of carbonaceous flecks			5.95		FL(A) = 1.12		-6	
4		6.4-6.9m: red-brown iron staining								
ĒĒ	-7				6.89 6.95		PL(A) = 0.69		7	0,00
4										0.00
	-8				7.95		PL(A) = 0.63		-8	
		8.1-8.55m: low strength band		с	8.41		PL(A) = 0.22			
4										
ĒĒ	-9				8.95		PL(A) = 0.63		-9 -	
4										
ĒĒ	10				9.93		PL(A) = 1.03		10	0000
-4	10.41	10.2-10.41m: with 25% siltstone clasts up to 20mm \diameter, fragmented (possibly drilling induced)			9.95				E Backfill	
ĒĒ	- 11	LAMINITE - low strength, fresh, slightly fractured, dark	· · · · ·		10.95		PL(A) = 0.18		-11	0.00
ĒĒ		grey siltstone interlaminated and interbedded with 40% _ pale grey, fine grained sandstone	· · · · · ·	с	10.00		1 2(7) 0.10			
33	11.45									
	12	SANDSTONE - high strength, fresh, slightly fractured to unbroken, pale grey, medium to coarse grained			11.95		PL(A) = 2.23		12	
88		sandstone, massive								0.00
E	-13	12.84-13.03m: with 50% carbonaceous laminations			12.75		PL(A) = 1.54		- 13	
37	-	$^{-}$ 13.03-13.21: fine to medium grained								00.0
EE		^L 13.21m: medium to coarse grained, irregular bedding dipping 10-20°			13.85		PL(A) = 1.19		Ē.,	00.00
ĒĒ	- 14	dipping 10-20							- 14	
36				C					-	
	15	14.8m: massive			14.95		PL(A) = 1.27		15	
35									E	0,00
E	-16				15.89		PL(A) = 1.36		- 16	
	10				15.95					0000
34		16.44m: irregular bedding dipping 10-20°		С					Ē	00.00
	-17				16.95		PL(A) = 1.57		- 17	0000
33	17.39	Bore discontinued at 17.39m	<u> </u>		-17.39-					
ĒĒ	-18	- target depth reached							- 18	
32										
Ē									Ē	
-										

RIG: Bobcat DRILLER: GM LOGGED: ARM CASING: HW to 2.5m; HQ to 2.7m TYPE OF BORING: Diatube to 0.10m; Non-destructive drilling to 1.7m; Solid flight auger (TC-bit) to 2.77m; NMLC-Coring to 17.39m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

Douglas Partners Geotechnics | Environment | Groundwater

PROJECT:

CLIENT:

LendLease Building Pty Ltd Randwick Campus Redevelopment LOCATION: Hospital Road and High, Magill and Botany Streets, Randwick

CLIENT:

PROJECT:

LendLease Building Pty Ltd

LOCATION: Hospital Road and High, Magill and Botany

Randwick Campus Redevelopment

SURFACE LEVEL: 55.7 AHD EASTING: 337090 NORTHING: 6245535 DIP/AZIMUTH: 90°/-

BORE No: 12 PROJECT No: 72505.13 DATE: 30-4-2018 SHEET 1 OF 1

	Description	ц		Sam	pling 8	& In Situ Testing		Well
Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
0.09	Strata			0.1	Se		_	Details
0.09		0.0	D	0.1				
0.6			D	0.8				
1 1.2	l'ond, donne	/		0.9				1 Backfill
	0.8-1.2 m: with some roots.			1.6		2,7,9		
2	SAND: medium dense, yellow brown, medium sand, damp		S	2.05		N = 16		-2 Bentonite
- 3			s	3.0		5,10,13 N = 23		3
				3.45		N - 20		
-4								-4
				4.5		6 14 10		
- 5			S	4.95		6,11,13 N = 24		
5								Screen 3.8-6.8m
6 6.1	SANDSTONE: high strength, slightly weathered		s	6.0 6.1		11/110 refusal		6
	becoming fresh, slightly fractured, pale grey, medium to coarse grained sandstone, some iron stained bedding			6.11				
-7	COALSE GLAILIEU SALIUSIULE, SUITE ITUL STALLEU DEUUING			7.0		PL(A) = 2.42		7
			с			PL(A) = 2.29		Bentonite -
- 8								
8.8				8.79		PL(A) = 1.24		
-9	SANDSTONE: high strength, fresh, unbroken, pale grey, medium grained sandstone			8.8		FL(M) - 1.24		-9 -00 -00
	9.40-9.45 m: bedding typically 10-20°					_		
- 10				9.81		PL(A) = 1.9		-10
			с					
11				10.72		PL(A) = 2.54		- 11 Backfill
- 11						_		
				11.48 11.81		PL(A) = 0.93		
- 12			С	12.06		PL(A) = 1.33		-12
			С	12.27 12.55				
- 13								-13
			с					
	√ 13.57-14.15 m: becoming slightly fractured			13.71		PL(A) = 1.2		
-14 14.15	^C 13.66-13.76 m: bedding typically 5 - 10°			14.0 14.15		PL(A) = 1.04		14
	Bore discontinued at 14.15m Target depth reached			1				

 RIG:
 Han Jin 8D
 DRILLER:
 BG Drilling
 LOGGED:
 JAP
 CASING:
 HW to 5.5 m

 TYPE OF BORING:
 Diatube to 0.09 m, NDD to 1.5 m, Solid flight auger (TC-bit) to 4.0 m, Rotary to 6.1 m, HQ Coring to 14.15 m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:

	SAM	PLINC	3 & IN SITU TESTING	LEGE	IND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 52.0 AHD EASTING: 337045 **NORTHING:** 6245565 **DIP/AZIMUTH:** 90°/--

BORE No: 13 PROJECT No: 72505.13 **DATE:** 3-5-2018 SHEET 1 OF 1

			Sileeis, Ranuwick					H. 90 /		SHEET I OF I
	De	ath	Description	hic		Sam		& In Situ Testing	5	Well
RL	Dej (n		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
8		0.05 -	ASPHALTIC CONCRETE: (typically <10 mm diameter)	~	-		S			
ŀ	-	0.11	ASPHALTIC CONCRETE: (typically <20 mm diameter)	0. 0. 0						Gatic Cover
ļ	-	0.4	ROADBASE: dark grey, angular igneous gravels, (typically							Backfill
ł		0.6	30-80 mm diameter)							
-	-	0.0	FILLING: grey-brown, ripped sandstone filling, (typically 40-80mm diameter)							Backfill
-12	-1	0.9	FILLING: orange brown, medium sandy gravel filling with some coarse sandstone gravel, damp	\mathcal{F}						
ł	l		SAND: medium dense, pale yellow, medium sand, damp							
-	-									
ŀ	-									
ł	-									
-	-					1.8				
- 22-	-2				s			2,6,9		-2
ł					Ũ			N = 15		
ŀ	-					2.25				
Ē	-	2.5 -	SAND: medium dense to dense, brown orange, fine to							Gravel
ŀ	-		medium sand with some silt, damp							
-	-					2.8				
-64	-3				D	3.0		44.0/00		
Ì	-	3.2			S	3.2		14,8/80 refusal		
-	-		SANDSTONE: extremely low to very low strength, orange brown sandstone			-				
-	-									
	-									
ŀ	-	3.8 -	Bore discontinued at 3.8m	•••••••						
-8	-4		Limit of investigation							-4
-	-									-
ŀ	-									-
Ē	-									-
ł	-									-
ŀ	-									-
47	-5									-5
ļ										
ŀ	-									
ŀ	-									
ŀ	[
-	-									
-	t									

RIG: Han Jin 8D

CLIENT:

PROJECT:

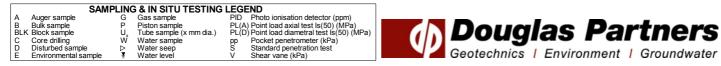
LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany


DRILLER: BG Drilling

LOGGED: JAP

CASING: Uncased

Geotechnics | Environment | Groundwater

TYPE OF BORING: Diatube to 0.15 m, Non-destructive drilling to 1.6 m, solid flight auge (TC-bit) to 3.8 m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SURFACE LEVEL: 55.2 AHD EASTING: 336986 **NORTHING:** 6245643 **DIP/AZIMUTH:** 90°/--

BORE No: 16 PROJECT No: 72505.13 **DATE:** 8-5-2018 SHEET 1 OF 1

			Streets, Randwick			'/AZI	1011	H: 90°/		SHEET 1 OF 1
		44	Description	jr.		Sam		& In Situ Testing	ž	Well
R	Dep (m		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0).12 -	CONCRETE SLAB	<u> </u>						Gatic Cover
22			FILLING: brown, fine to medium sand filling with some silt and trace of igneous gravel, humid							
-	C).55 -	SAND: yellow, fine to medium sand, damp							
-	· 1									Backfill
54										
-	-2	2.0 -				2.0				Backfill Bentonite -2
- 23			SAND: medium dense, yellow, fine to medium sand, damp		S			4,9,11 N = 20		
-						2.45				
52	3	3.2								
-			SAND: medium dense, brown, fine to medium sand with trace of clay, damp			3.5				Gravel
-	4				S	3.95		7,9,20 N = 29		
F	4	4.1	SANDSTONE: you law strength grange brown and light		s	4.1		6/30, Bouncing		
51			SANDSTONE: very low strength, orange-brown and light grey, medium to coarse grained sandstone			4.15				
-	- 5	4.7 -	Bore discontinued at 4.7m Limit of investigation	<u></u>						-5
20										
-										
	х. ц									W to 4.0 m

RIG: Han Jin 8D DRILLER: BG Drilling LOGGED: JAP CASING: HW to 4.0 m TYPE OF BORING: Diatube to 0.12 m, Non-destructive drilling to 1.8 m, solid flight auger (TC-bit) to 2.0 m, Rotary to 4.7 m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample CDE

LendLease Building Pty Ltd

PROJECT: LOCATION:

CLIENT:

Randwick Campus Redevelopment Hospital Road and High, Magill and Botany Streets, Randwick

CLIENT:

PROJECT:

LOCATION:

LendLease Building Pty Ltd

Streets, Randwick

Randwick Campus Redevelopment

Hospital Road and High, Magill and Botany

SURFACE LEVEL: 55.2 AHD **EASTING:** 336983 **NORTHING:** 6245644 **DIP/AZIMUTH:** 90°/--

BORE No: 17 PROJECT No: 72505.13 DATE: 8-5-2018 SHEET 1 OF 1

			Streets, Randwick					H: 90*/		SHEET TOF T
	De	oth	Description	hic		Sam		& In Situ Testing	Ŀ	Well
RL		pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
55		0.11 -	CONCRETE SLAB /		,					Gatic Cover
		0.6	FILLING: brown, fine to medium sand filling with some silt and trave of igneous and sandstone gravel, humid	$\left \right\rangle$						
54	-1		SAND: yellow-brown, fine to medium sand, damp							
53	-2	2.0 -	SAND: medium dense yellow-brown fine to medium sand, damp		s	2.0 2.45		4,6,9 N = 15		Backfill
52	-3									3
Ĕ		3.3	SAND: medium dense, brown, fine to medium sand with		ļ	3.5		0 10 14		
	-4		trace of clay, damp		S	3.95		9,10,14 N = 24		
51										
		4.4	SANDSTONE: very low to low strength, orange-brown and light grey, medium to coarse grained sandstone							Bentonite
20	-5	5.08				5.0				5
2			SANDSTONE: medium strength, slightly weathered, slightly fractured, light grey and red-brown, medium to		с					
Ē	-6		coarse grained sandstone, bedding typically 0-10°			5.79 5.8		PL(A) = 0.6		
49						0.0				
						6.71		PL(A) = 0.8		
48	7									
4					С					Gravel
	- 8					7.86		PL(A) = 1.1		
47										
						8.8				
46	-9					8.88		PL(A) = 0.5		
4		9.5				9.34		PL(A) = 0.5		
	- 10		SANDSTONE: medium strength, fresh, slightly fractured to unbroken, light grey sandstone with some low strength		1	10.0		PL(A) = 0.8		
45			bands, bedding typically 10-15° with some cross bedding		с	10.0		T L(A) = 0.0		
			SANDSTONE (see over page)							Bentonite
4	-11					11.0		PL(A) = 0.12		
Ē	- 12					11.85		PL(A) = 0.39		-12
43		12.24	SANDSTONE: medium and high strength, fresh,		1	11.95 12.37		PL(A) = 1.38		
Ē			unbroken, light grey and grey sandstone							
5	-13				1					ackfill
4			13.4-13.8: Bedding typically 5-10°		С	13.44		PL(A) = 0.69		
	- 14		· · · · · · · · · · · · · · · · · · ·		1					-14
4	14				1					
		14.0						PL(A) = 1.16		
	- 15	14.8	Bore discontinued at 14.8m			14.70				-15
-4			Target depth reached							
Ē										
-								-		·

 RIG: Han Jin 8D
 DRILLER: BG Drilling
 LOGGED: JAP
 CASING: HW to 4.5 m

 TYPE OF BORING:
 Diatube to 0.11 m, Non-destructive drilling to 1.8 m, Auger to 2.0 m, Rotary to 5.0 m, NMLC Coring to 14.80 m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 ¥
 Water level
 V

Appendix D

Results of Current Investigation

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.7 AHD EASTING: 337095 NORTHING: 6245556.4 DIP/AZIMUTH: 90°/-- BORE No: BH601 PROJECT No: 72505.18 DATE: 19 & 27/08/2020 SHEET 1 OF 2

\square			Description	D	egre	e of	0	Rock	1	racture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Dep		of	VVe	eath	ering	aphic Log		alei alei	Spacing	B - Bedding J - Joint			-	Test Results
	(n	n)	Strata	∧ ≯	Š	NS S I	_ چ ا	Kery Low Low Medium Kery High Ex High	0.01	0.05 0.10 1.00 1.00 (W)	S - Shear F - Fault	Type	Rec.	RQD %	& Comments
H		0.09	ASPHALTIC CONCRETE				- - -		1	11 11					Commonito
		0.3	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grey, medium sand, moist									E			
55	- 1	0.0	FILL/Gravelly SAND: medium, brown, fine igneous subangular and subrounded, fine sandstone gravel, moist									E/D	-		
54		1.8	SAND SP: fine to medium, pale grey, moist, loose, aeolian												
	-2		SAND SP: fine to medium, yellow-brown, trace silt, moist, medium dense, aeolian									s			4,5,6 N = 11
53	- 3														
	- 3		Below 3.0m: dark red-brown, apparently dense								Unless noted otherwise, rock is fractured along rough, planar bedding planes dipping at 0-20°	D			
52			Below 4.0m: wet												18/50
		4.05 4.11	SANDSTONE: medium to coarse grained, pale grey and yellow brown,			Ē	_ <u>></u> <				4.05m: CORE LOSS: 60mm	S			$\frac{refusal}{PL(A) = 0.04}$
51	- 5		with 10% decomposed seams, very low then low and medium strength, highly and slightly weathered, slightly fractured, Hawkesbury Sandstone												PL(A) = 0.4 PL(A) = 0.28
											5.29m: Ds 140mm 5.5m: Ds 10mm	с	98	77	1 L(A) = 0.20
20	- 6	6.0	SANDSTONE: medium to coarse	 							5.68m: Ds 90mm				PL(A) = 0.85
49			grained, pale grey, cross bedded at 10-20°, medium strength, slightly weathered then fresh, slightly fractured, Hawkesbury Sandstone				1				6.65m: Ds 10mm, fe, st				
	-7														PL(A) = 0.72
48	- 8	7.5	SANDSTONE: medium grained, pale grey, medium to high strength, fresh, unbroken, Hawkesbury Sandstone								7.59m: B10°, pl, ro, cly 1mm				PL(A) = 0.88
47	- 9										8.6m: Ds 20mm	с	100	99	PL(A) = 1.2
46	ອ														F L(M) - 1.2

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HW to 4.0m, HQ to 4.0m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 4.0m, NMLC Coring to 16.02m

 WATER OBSERVATIONS:
 Water seepage at 3.95m, 20% water loss below 8.0m

 REMARKS:
 Bulk samples taken 0.5-1.5m, 1.5-2.0m & 2.0-3.8m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PILO
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 C core drilling
 W
 Water sample
 p
 Pocket penetrometer (KPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.7 AHD **EASTING:** 337095 **NORTHING:** 6245556.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH601 PROJECT No: 72505.18 DATE: 19 & 27/08/2020 SHEET 2 OF 2

Π		Description	Degree of Weathering ≳ ≩ ≩ ỗ ஜ ଝ	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
님	Depth (m)	of		aphi Log	Ex Low Very Low Low Neight High Kery High Kery High Kery High Kery High Kery Low Very Low Medium Kery Low Very Low Medium Kery Low Low Now Now Kery Low Low Now Now Now Now Now Now Now Now Now N	Spacing (m)	B - Bedding J - Joint	е	e%	Q,	Test Results
	(11)	Strata	XW MW SW FR	ອ_			S - Shear F - Fault	Type	Core Rec. %	RQ 8	& Comments
44	- 11	SANDSTONE: medium grained, pale grey, medium to high strength, fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>					10.68m: B0°, pl, ro, cly vn & J80-90°, un, ro, cln 10.76m: B0°, pl, ro, cly co	С	100	98	PL(A) = 1.3 PL(A) = 0.96
	- 12						>>				PL(A) = 1.3
-8-											
	- 13										PL(A) = 0.97
42	14										PL(A) = 1
41	- 14	Between 14.2-15.85m: cross bedded at 5-15°					14.35m: B5°, pl, ro, cly vn	с	100	97	FL(A) - 1
	- 15						15.17m: B (x2) 5°, pl, ro, cly vn				PL(A) = 0.98
-9-											PL(A) = 0.68
	- 16 16.02 -	Bore discontinued at 16.02m Target depth reached									()
-8											
	- 17										
8											
	- 18										
37	-10										
36	- 19										

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HW to 4.0m, HQ to 4.0m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 4.0m, NMLC Coring to 16.02m

 WATER OBSERVATIONS:
 Water seepage at 3.95m, 20% water loss below 8.0m

 REMARKS:
 Bulk samples taken 0.5-1.5m, 1.5-2.0m & 2.0-3.8m

SAM	IPLIN	G & IN SITU TESTING	LEGEND		
A Auger sample	G	Gas sample	PID Photo ionisation de	etector (ppm)	
B Bulk sample	P	Piston sample	PL(A) Point load axial tes		
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametra	al test ls(50) (MPa)	Douglas Partners
C Core drilling	Ŵ	Water sample	pp Pocket penetrome	ter (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetrat	ion test (
E Environmental sample	Ŧ	Water level	V Shear vane (kPa)		Geotechnics Environment Groundwate

	BORE: 6	01 PRC	JECT:	RANDWICK	AUG	JST 2020	
	ouglas	Partners		Project No: 72.505 BH ID: 6H 60 1 Depth: 14.05-8.0 Core Box No.: 1/			
him	hinh	ndun				milia	uhou
72 505.18	Randwick	BH 601	START	4.05m			-
4	a						Up de la Martin
5	A ALLAND			A A A A A A A A A A A A A A A A A A A			
6							
7				121			a and a state of a state of a
			4.05	-8.00m			

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55 AHD EASTING: 337097.5 NORTHING: 6245571.8 DIP/AZIMUTH: 90°/-- BORE No: BH602 PROJECT No: 72505.18 DATE: 19 & 24/08/2020 SHEET 1 OF 1

			Degree of	T	Pool							
	Donth	Description	Degree of Weathering ≳ ≩ ≩ ≶ ∞ ∰	hic L	Rock Strength	er	Fracture Spacing	Discontinuities				n Situ Testing
RL	Depth (m)	of		Log	Ex Low Very Low Medium High Very High	Water	(m)	B - Bedding J - Joint	Type	ore 5. %	RQD %	Test Results &
6		Strata	W M M M M M M M M M M M M M M M M M M M	0	Ex Low Medi Very Ex H	<u></u>	0.05 0.10 1.00	S - Shear F - Fault	←	о Я	Ж°,	Comments
	0.09	ASPHALTIC CONCRETE		ġ. ९					E			
	0.28	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grey, medium, moist							E/D			
4	0.7	FILL/SAND: fine to medium, dark brown, with silt, moist							E/D			
54	- 1	SAND SP: fine to medium, pale grey, moist, aeolian			•	İ						
53												4,3,5
ŧ	2.2	SAND SP: fine to medium,				l			S			4,3,5 N = 8
	2.6	orange-brown, apparently cemented, iron indurated, ("coffee rock"), aeolian							D			
52	- 3	SAND SP: fine to medium, yellow-brown, moist, aeolian				ļ			D			5,25/125
	3.2	Below 3.1m: becoming wet							s			refusal
	3.35	SANDSTONE: medium grained, pale yellow-brown, apparently very low to low strength, Hawkesbury										
51	-4	Sandstone Bore discontinued at 3.35m										
Ľ		Target depth reached										
Ē												
20	-5											
49	-6											
ŀ												
						İ						
48	-7											
Ē												
						ļ						
47	- 8											
						İ						
					İİİİİİ	i						
46	-9					i						
L		1		1						I	1	n

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH
 CASING:
 None

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 3.35m
 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Bulk sample taken at 0.7-1.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121809 installed in well

	SAM	PLIN	G & IN SITU TESTING	LEG	END	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)	Douglas Partners
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	A Douolas Pariner
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	📕 Geotechnics Environment Groundwat

Lendlease Building Pty Ltd

LOCATION: High Street and Hospital Road, Randwick

SCH Stage 1 / CCCC Project

CLIENT: PROJECT: SURFACE LEVEL: 54.2 AHD EASTING: 337102.9 NORTHING: 6245608 **DIP/AZIMUTH:** 90°/--

BORE No: BH603 PROJECT No: 72505.18 DATE: 19 & 26/08/2020 SHEET 1 OF 2

\square			Description	Degree of Weathering	ы	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R		epth m)	of	vveaulering	Graphic Log		Spacing (m)	B - Bedding J - Joint			-	Test Results
	(,	Strata	XW MW FR SW FR	9	Very Low Very Low Medium Very High Ex High	0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10	S - Shear F - Fault	Type	ပ် ပို	RQD %	& Comments
		0.04	ASPHALTIC CONCRETE		ö. O		11 11					Commonito
- 24	-	0.45	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grey, medium, moist						E E/D	-		
+ +	- - -1	0.8	FILL/Gravelly SAND: medium, brown, subangular, fine igneous and subrounded, fine sandstone gravel,		\bigotimes				E/D	-		
23	-	1.3	moist FILL/Silty SAND: fine to medium, dark brown, non-plastic fines, with subangular, fine sandstone gravel,					Unless noted otherwise, rock is fractured along rough, planar bedding planes dipping at 0-20°	E/D			
Ē	-	1.7	moist					planes dippling at 0-20	P			PL(A) = 0.28
52	-2		Clayey SAND SC: fine to medium, orange-brown, low plasticity, moist, residual below 1.5m: pale orange-brown		· · · · · · · · · · · · · · · · · · ·							
	-		SANDSTONE: medium to coarse grained, orange-brown and pale grey, low and medium strength with		· · · · · · · · · · · · · · · · · · ·			2.56m: B0°, pl, ro, cly vn 2.73m: Ds 10mm	с	96	76	PL(A) = 0.62
- 1-2	-3		extremely low strength bands, highly weathered, slightly fractured, Hawkesbury Sandstone		· · · · · · · · · · · · · · · · · · ·			3.3m: Cs 60mm				PL(A) = 0.33
	-	3.91						3.8m: CORE LOSS:				
202	-4	4.2	SANDSTONE: medium to coarse grained, pale grey with some		· · · · · · · · · · · · · · · · · · ·			∖ 110mm 3.94m: B0°, pl, sm, cly 1mm				PL(A) = 0.26
	- 5		yellow-brown, cross bedded at 20°, medium then high strength, slightly weathered,		· · · · · · · · · · · · · · · · · · ·			4.61m: B0°, pl, sm, cly 1mm				PL(A) = 0.55
49					· · · · · · · · · · · · · · · · · · ·			5.28m: B (x3) 10°, pl, ro, cly vn	с	100	88	
48	-6							6.31m: Ds 50mm				PL(A) = 1.8
								6.56m: J40°, pl, ro, cln 6.64m: Ds 10mm 6.92m: CORE LOSS:				
47	-	7.04 7.25 -	SANDSTONE: medium grained, pale grey, medium then high strength, fresh, slightly fractured to					120mm				PL(A) = 1
46	- 8		unbroken, Hawkesbury Sandstone					7.75m: Ds 10mm				PL(A) = 0.92
	-				· · · · · · · · · · · · · · · · · · ·			8.46m: B0°, un, cly co	с	97	97	
45	-9											PL(A) = 0.46
	-				· · · · · · · · · · · · · · · · · · ·							

RIG: Vac Truck, Hand Tools & Bobcat DRILLER: VAC Group LOGGED: KR/JJH/TM CASING: HW to 1.8m, HQ to 1.8m TYPE OF BORING: Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.7m, Solid flight auger to 1.8m, NMLC Coring to 16.00m WATER OBSERVATIONS: Water seepage at 1.8m REMARKS: Bulk sample taken 0.45-0.8m

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U_r Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) C Core drilling W Water sample Pp Pocket penetrometer (kPa) D Dictive hold campile N Water sample Pp Pocket penetrometer (kPa)		SAM	PLINC	3 & IN SITU TESTING			
BLK Block sample U Tube sample Y PL(D) Point load diametral test is(50) (MPa) C Core drilling W Water sample pp Pocket penetrometer (kPa)	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
C Core drilling W Water sample pp Pocket penetrometer (kPa)			Р				
	B	LK Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)	
D Disturbed cample N Water seen S Standard ponetration test	C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Distuided sample D Water seep 3 Standard penetration test	D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample 📱 Water level V Shear vane (kPa)	E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 54.2 AHD EASTING: 337102.9 NORTHING: 6245608 **DIP/AZIMUTH:** 90°/--

BORE No: BH603 PROJECT No: 72505.18 DATE: 19 & 26/08/2020 SHEET 2 OF 2

\square		Description	Degree of Weathering	Fracture Discontinuities			Sampling & In Situ Testing			
R	Depth	of	Weathering	Strength Very High Very High Very High Vater	Spacing	B - Bedding J - Joint	0	0%		Test Results
٣	(m)	Strata	e g	Ex Low High Ex High	0.00 0.100 0.50 (W)	S - Shear F - Fault	Type	Core	RQD %	&
Н	10.09	SANDSTONE: medium grained,	× H M M M M M M M M M M M M M M M M M M		0.0	10.02m: CORE LOSS:	-	Ľ.		Comments PL(A) = 0.92
43	-11	pale grey, medium then high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued)				70mm	с	98	98	PL(A) = 0.84 PL(A) = 0.48
	- 13					13.55m: J30°, pl, ro, cln				PL(A) = 0.81
	- 14					14.2m: B0°, pl, ro, cly vn 14.65m: J30°, pl, ro, cly vn vn	с	100	99	PL(A) = 1.2
30	-15 -16 16.0	Bore discontinued at 16.0m				14.68m: B0°, pl, ro, cly vn				PL(A) = 1.1 PL(A) = 1.1
38		Target depth reached								
4	- 17									
38	-18									
	- 19									

RIG: Vac Truck, Hand Tools & Bobcat DRILLER: VAC Group LOGGED: KR/JJH/TM CASING: HW to 1.8m, HQ to 1.8m TYPE OF BORING: Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.7m, Solid flight auger to 1.8m, NMLC Coring to 16.00m WATER OBSERVATIONS: Water seepage at 1.8m REMARKS: Bulk sample taken 0.45-0.8m

	SAMPLING	3 & IN SITU TESTIN	G LEGE	ND	
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample		Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sar	nple 📱	Water level	V	Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT:

PROJECT:

SCH Stage 1 / CCCC Project LOCATION: High Street and Hospital Road, Randwick

Lendlease Building Pty Ltd

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 54.9 AHD **EASTING:** 337107 **NORTHING:** 6245631.8 **DIP/AZIMUTH:** 90°/-- BORE No: BH604 PROJECT No: 72505.18 DATE: 19 & 24/08/2020 SHEET 1 OF 1

\prod		Description	Degree of Weathering	<u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampling 8	In Situ Testing
님	Depth (m)	of		raph. Log	Strength High Agter Strength	Spacing (m)	B - Bedding J - Joint	e	Core Rec. %	Test Results
	(11)	Strata	XW MW FS SW FR	<u>م</u> _	Ex Low Very Low Medium High Ex High		S - Shear F - Fault	Type	S S S S	Comments
	0.075	ASPHALTIC CONCRETE		ö. V				E		
	0.24 - 0.4 -	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grey, medium, moist		\bigotimes				E		
54	·1 -	FILL/Gravelly SAND: medium, brown, subangular, fine igneous gravel, moist		\bigotimes				E		
	4.0	FILL/SAND: fine to medium, brown, trace subrounded, fine to coarse sandstone gravel, moist		\bigotimes						
53	1.6 - 1.9 - ·2	Between 1.0-1.2m: large brick fragment, dark brown silty sand, with charcoal						E/D D		
		Clayey SAND SC: fine to medium, orange-brown, low plasticity, moist, residual						S	-	3,2,3 N = 5
22	.3	SAND: fine to medium, orange-brown, with clay, moist, loose, residual						D		
	3.4 3.45	Below 2.7m: wet Below 2.95m: with pale grey sand, medium dense		· · · · · · · · · · · · · · · · · · ·				s		10,11,17 N = 28
51	•4	SANDSTONE: medium grained, pale grey, very low to low strength, Hawkesbury Sandstone								
		Bore discontinued at 3.45m Target depth reached								
50	- 5									
	5									
49	-6									
	.0									
48	.7									
47	· 8									
	U									
46										
	9									
45										

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH
 CASING:
 None

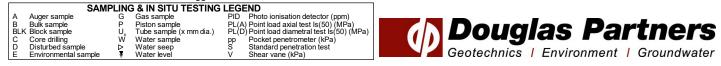
 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.9m, Solid flight auger to 3.45m
 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Bulk samples taken 0.4-1.6m & 1.7-1.9m
 Kasing:
 Kasing:
 Kasing:

	SAMI	PLIN	G & IN SITU TESTING	LEG	END]								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_			-	_		_	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			-	Doug					-
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)									
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					140				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1.3								
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)				Geotechnics	I Envi	ronm	ent I	Groundw	ater
-	· · · · · · · · · · · · · · · · · · ·				. ,									

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD **EASTING:** 337109.8 **NORTHING:** 6245649.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 1 OF 2


Π		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
님	Depth (m)	of	Weathering	raph Log		Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	Då °	Test Results &
	()	Strata	XW MW SS SS SS SS SS SS SS SS SS SS SS SS SS	G	Ex Low Very Low Medium Very High Ex High	0.05 0.10 1.00	S - Shear F - Fault	Ţ	N N	R S	∝ Comments
[0.11			ö. 'N				E/D			
55	0.24	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grey, medium, moist		\bigotimes				E*/D			
	-1	FILL/Gravelly SAND: medium, brown, subangular, fine igneous gravel, moist		\bigotimes				E/D	-		
-25	1.35	Between 0.4-0.55m: large brick fragment FILL/SAND: fine to medium, brown,						E			
	-2	trace subrounded, fine to coarse sandstone gravel, silt, and glass fragment, moist							-		
23		SAND SP: fine to medium, pale grey, moist, aeolian		(.				s			1,3,2 N = 5
	2.5	orange-brown, low plasticity, moist, loose, residual					Unless noted otherwise, rock is fractured along rough, planar bedding	D			
 	-3	Below 2.2m: with ironstone bands		[planes dipping at 0-20°	S	1		7,25/30 refusal
52	- 3.18	plasticity, pale grey, w~PL, residual (Extremely weathered sandstone)									PL(A) = 0.23
		SANDSTONE: medium to coarse grained, pale grey and red-brown,					3.7m: Cs 50mm				
	- 4	low to high strength, moderately and highly weathered, slightly fractured to unbroken, Hawkesbury					4m: J60°, pl, ro, fe st				PL(A) = 0.94
21		Sandstone		· · · · · · · · · · · · · · · · · · ·				с	98	96	
	- 5 4.94						4.9m: CORE LOSS: 40mm				PL(A) = 1.3
22	- - -			· · · · · · · · · · · · · · · · · · ·							
	5.75	SANDSTONE: medium grained, pale grey, medium strength, fresh,		· · · · · · · · · · · · · · · · · · ·			5.66m: Ds 30mm				PL(A) = 0.76
49	-	slightly fractured to unbroken, Hawkesbury Sandstone									PL(A) = 0.70
				· · · · · · · · · · · · · · · · · · ·			6.48m: Ds 60mm				
	-7										PL(A) = 0.84
48								с	100	98	
							7.57m: B0°, pl, ro, cly vn				
	-8										PL(A) = 0.84
47											
	-9 9.0							<u> </u>			PL(A) = 1.3
-94	- - -	SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken,									ι _{μ(Λ)} = 1.3
		Hawkesbury Sandstone						С	100	100	
Ē	-						>>				

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

REMARKS: *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119606 installed in well

CLIENT:

PROJECT:

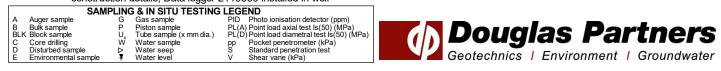
LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD EASTING: 337109.8 NORTHING: 6245649.5 DIP/AZIMUTH: 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 2 OF 2


				Fracture	Discontinuities	Sampling & In Situ Testing					
R	Depth (m)	of	, rouning	Log	Strength Very Low Medium Very High Very High Very High	Spacing (m)	B - Bedding J - Joint	Type	e.%	D D	Test Results
	(,	Strata	MW HW XW	Ū	Ex Low Very Low Medium Very High Ex High		S - Shear F - Fault	⊨	ပိမ္ရွိ	R %	& Comments
44	- 11	SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i> Between 10.7-12.17: cross bedded at 0-10°						С	100		PL(A) = 1.3 PL(A) = 1.6
43	- 12						12.15m: B0°, pl, ro, cln				PL(A) = 2
42	- 13							С	100	97	PL(A) = 1.4
41	- 14	Between 13.9-15.4m: cross bedded at 0-10°					13.97m: B5°, pl, cly 1mm 14.25m: B10°, pl, cly vn 14.33m: B10°, pl, cly vn				PL(A) = 1.4
40	- 15 - 16						15.38m: Ds 10mm 16.11m: Ds 10mm	С	100	99	PL(A) = 2 PL(A) = 2.2
- 00 	16.28	Bore discontinued at 16.28m Target depth reached		<u></u>		 					
38	- 17										
37	- 18										
39											

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

REMARKS: *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119606 installed in well

	BORE: 605	PROJECT: RANDWIC	K AUGUST 2020
-	Douglas Part	Core Box No.:	-8.0m
_	START 3.18m		
5 m			
7m			
		3.18-8.00m	

SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 1 OF 2

\square		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
님	Depth (m)	of	Weathering	Ex Low Ex Low New Low New Low New Low New High New New New New New New New New New New	Spacing (m)	B - Bedding J - Joint	e	e%	Δ.	Test Results
	(11)	Strata	G G		0.05 0.10 0.50 0.10 0.50 0.50 0.50 0.50	S - Shear F - Fault	Type	S S	RQD %	& Comments
52	0.06						D	-		0000000
	- 0.2 - - - 0.6	dark grey, igneous,					E/D*			
	- - - - 1	FILL/ GRAVEL: medium, yellow-brown, sandstone, with clay,					E/D			
51	- - - 1/	sand, crushed sandstone, dry \neg FILL/ SAND: fine to medium, pale					s			3,4,4 N = 8
	- - - - -2	grey, dry SAND SP: fine to medium, brown, dry, loose, aeolian Below 1.8m: moist					E/D			
20	- - - -							_		
	- 3	Below 2.5m: medium dense				Unless noted otherwise, rock is fractured along	s			5,7,9 N = 16
49	- 3.1 	SANDSTONE: medium to coarse grained, yellow-brown, very low to low strength, Hawkesbury				rough, planar bedding planes dipping at 0-20°				
	- 3.6	Sandstone								PL(A) = 0.14
48	- 4	SANDSTONE: medium to coarse grained, pale grey with some pale orange staining, low then medium strength, slightly weathered, slightly								PL(A) = 0.23
47	-5	fractured, Hawkesbury Sandstone				5.24m: Ds 10mm	С	100	99	PL(A) = 0.61
46	-6 - 6.25	pale grev, medium strength, fresh.								PL(A) = 0.68
45	-7	slightly fractured to unbroken, Hawkesbury Sandstone				7.37m: Ds 20mm	с	100	98	PL(A) = 0.46
44	- - - - - - - -									PL(A) = 0.76
	-					8.68m: Ds 40mm				
43	-9					8.91m: Ds 20mm	с	100	96	PL(A) = 0.68
	- - -									

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

	SAM	PLIN	3 & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLł	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	Douolas Pariners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
D E	Disturbed sample	₽ ¥		S Standard penetration test	Geotechnics Environment Groundwate

SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 2 OF 2

	_	Description	Degree of Weathering ≳ ≩ ≩ § ∞ ∰	<u>.</u>	Rock Strength ត្រ	Fracture	Discontinuities	Sa	ampli	ng & l	oling & In Situ Testing		
R	Depth (m)	of	,	Sraph Log	Very Low Very Low Medium Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &		
		Strata	X H M S S H		Ex Lo Very Nedi High Ex H	0.05	S - Shear F - Fault	ŕ	ပမ္ရ	Ψ̈́	Comments PL(A) = 0.52		
41 42	- 11	SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					11.09m: Ds 110mm 11.43m: Ds 60mm	С	100		PL(A) = 0.32		
	- 12										PL(A) = 0.88		
-40	- 13										PL(A) = 1		
30	-							с	100	98			
38	- 14						14.35m: B0°, pl, ro, cly ∖vn 14.53m: Ds 40mm				PL(A) = 0.72		
37	- 15							с	100	98	PL(A) = 0.64		
-8	- 16					┆┊┆┏┿┩	15.95m: Ds 50mm				PL(A) = 0.08		
35	- 16.19 	Bore discontinued at 16.19m Target depth reached					<u>16.17m: Ds 20mm</u> _ ∕						
	- 18												
33	- 19												
ŧ													
								I	I				

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

	SAM	PLIN	G & IN SITU TESTING	LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			-	-	
В	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)				00	Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)					Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				E	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		📕 Geotechn	IICS I	Envir	onment Groundwater

BORE: 60	6 PROJEC	T: RANDWI	CK AUGU	ST 2020	
Ceotechnics Environm		Project No: 72 BH ID: + BH 6 Depth: + 3-60 Core Box No.:	505.18 06 m-8.0 m 1/3		
72505.18 Randwick		3.60m			
5					
7	<u>N</u>				
	3.	60-8.00m			

SURFACE LEVEL: 52.6 AHD **EASTING:** 337035.3 **NORTHING:** 6245607.6 **DIP/AZIMUTH:** 90°/-- BORE No: BH607 PROJECT No: 72505.18 DATE: 31/8/2020 SHEET 1 OF 2

یا ہے	Depth	Description	Degree of		Rock	Fracture	Discontinuities	Sa	amplii	na 8. I	City Tastin
L L		-	Weathering	l∺	Strength ត្រ	Spacing				-	n Situ Testing
	(m)	of	_	Graphic Log	Strend Medium Medium Very High Ex High Ex High	(m)	B - Bedding J - Joint	Type	ore %	RQD %	Test Results &
		Strata	W H M S L R N N N N N N N N N N N N N N N N N N	G	High EX High	0.01 0.10 0.50 1.00	S - Shear F - Fault	₽	ŭ Å	Я,	Comments
EE		ASPHALTIC CONCRETE		ģ. 'O				E/D			
EE	0.25	FILL/ROADBASE: GRAVEL, coarse, dark grey, igneous,		$\overleftarrow{\times}$					1		
22	0.55	subangular-subrounded, dry,		XХ				E/D			
		roadbase									
F - 1	1	FILL/SAND: fine to medium, pale grey, trace brick and tile fragments,						E/D			
EE		dry, loose						s			7,8,6 N = 14
	1.4	SAND SP: fine to medium, yellow-brown, moist, loose, aeolian							-		N - 14
5-		SAND SC: fine to medium, dark									
ļ ļ		brown, with clay, loose, moist,				i ii ii		E/D*			
	2	aeolian							1		
EE			i i i i i i		iiiiii	i ii ii					
- 22											4.0.0
								S			1,3,3 N = 6
F - 3	3						Unless noted otherwise.				
ĒĒ							rock is fractured along				
EE							rough, planar bedding planes dipping at 0-20°				
-6-							1 11 5				
ţ ţ	3.89	SANDSTONE: medium to coarse					3.89m: CORE LOSS:				
4	4 3.92	grained, pale grey and pale orange,		:::::			30mm				PL(A) = 0.14
EE		low strength, slightly weathered, slightly fractured, Hawkesbury	i i i i i i				4.21m: B5°, pl, ro, cln				
-8-		Sandstone				╎╎╎┖┿┓					
							4.58m: B0°, pl, ro, cly vn	С	98	98	
F - 5	4.9 5	SANDSTONE: medium grained,	┤╎╎╵┡┿┿┓								PL(A) = 0.29
ĒĒ		pale grey, low strength, fresh, unbroken, Hawkesbury Sandstone									
EE											
41											
ļ ļ											
6	0										PL(A) = 0.22
E	6.35	SANDSTONE: medium grained,		×			6.27m: CORE LOSS:				
46		pale grey, medium strength with					80mm				
		high strength bands, fresh, unbroken, Hawkesbury Sandstone									
F -7	7	unbroken, nawkesbury Gandstone							00		PL(A) = 0.66
EE			iiii					С	98	98	
							7.41m: Ds 10mm				
-9-			iiiii		iiii						
ŧ ŧ.											D(A) = 0.04
38	5										PL(A) = 0.84
ŧ Ē											
44											
9	9										PL(A) = 0.76
[[с	100	98	
43-											
ţ ţ											

RIG: Bobcat

CLIENT:

PROJECT:

Lendlease Building Pty Ltd

LOCATION: High Street and Hospital Road, Randwick

SCH Stage 1 / CCCC Project

DRILLER: JE

LOGGED: TM

CASING: HQ to 3.89m

TYPE OF BORING: Solid flight auger to 3.8m, Rotary to 3.89m, NMLC Coring to 17.59m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD04/20200831, Bulk samples taken 0.6-1.4m, 1.5-3.8m

	SAN	IPLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1.	Douglas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	Oracteritaria I Frankramment I Oracan danatan
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 52.6 AHD **EASTING:** 337035.3 **NORTHING:** 6245607.6 **DIP/AZIMUTH:** 90°/-- BORE No: BH607 PROJECT No: 72505.18 DATE: 31/8/2020 SHEET 2 OF 2

\square		Description	Degree of Weathering ≳ ≩ ≩ ፩ ፼ ፼	U	Rock Strength _{bo}	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
묍	Depth (m)	of	Veatricing	Log	Very Low Very Low Medium Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore %	RQD %	Test Results &
	()		XW MW SW FS	ს	Ex Lo Very Low Very Very Very Very V	0.05	S - Shear F - Fault	Ţ	с р	Я° ОХ	Comments
	- 11	SANDSTONE: medium grained, pale grey, medium strength with high strength bands, fresh, unbroken, Hawkesbury Sandstone (continued)					10.3m: B5°, pl, ro, cln 10.49m: Ds 40 mm 11.15m: B0°, pl, ro, cly, vn	с	100	98	PL(A) = 0.81 PL(A) = 0.87
-4	11.64			<u>>>></u>			11.58m: CORE LOSS: 60mm				
40	- 12										PL(A) = 1.3
39	- 13							С	98	95	PL(A) = 0.5
	- 14						13.9m: Ds 110mm 14.46m: Ds 50mm				PL(A) = 1.7
	- 15										PL(A) = 0.3
36	- 16						16.33m: Ds 10mm	с	100	100	PL(A) = 0.94
	- 17	Between 16.85-17.57: with siltstone clasts									PL(A) = 1.1
35	17.59	Bore discontinued at 17.59m Target depth reached					_ 17.5m: B0°, pl, ro, cly vn_				
	- 18	rarget depth reached									
34	- 19										
33											

RIG: Bobcat

CLIENT:

PROJECT:

Lendlease Building Pty Ltd

LOCATION: High Street and Hospital Road, Randwick

SCH Stage 1 / CCCC Project

DRILLER: JE

LOGGED: TM

CASING: HQ to 3.89m

TYPE OF BORING: Solid flight auger to 3.8m, Rotary to 3.89m, NMLC Coring to 17.59m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD04/20200831, Bulk samples taken 0.6-1.4m, 1.5-3.8m

	SAM	PLINC	& IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		_
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Pa	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)			rners
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dougido i di	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1		
Е	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment	Groundwater

SURFACE LEVEL: 52.9 AHD EASTING: 337054.9 NORTHING: 6245642.4 DIP/AZIMUTH: 90°/-- BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 1 OF 2

\square		Description	Degree of	0	Rock	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
RL	Depth	of	Weathering	raphic Log		Spacing	B - Bedding J - Joint				
	(m)	Strata	HW WW R SW WW R	ъ	Ex Low Very Low High Very High Ex High 0.01	0.05 0.10 1.00 1.00	S - Shear F - Fault	Type	Ç Ö	RQD %	& Comments
H	0.05	ASPHALTIC CONCRETE		i N							Comments
-	0.2	FILL/ROADBASE: GRAVEL, coarse, dark grey, igneous,]subangular-subrounded, dry						E/D E/D			
52	- - -1	FILL/ GRAVEL: medium, yellow-brown, sandstone, with clay, sand, crushed sandstone, dry		\bigotimes				E/D*	-		
-	1.5	FILL/SAND: fine to medium, brown, trace silt, and fine subangular		\bigotimes				S	-		1,1,1 N = 2
51	-2	SAND SP: fine to medium, yellow-brown, with clay, moist, loose, aeolian					Unless noted otherwise, rock is fractured along	E/D	-		
-	- 2.5	SANDSTONE: medium to coarse					rough, planar bedding planes dipping at 0-20°	S	-		25/90
ŀ		grained, pale yellow and red, very							1		refusal PL(A) = 0.07
	-3	low then low strength, highly weathered, slightly fractured, Hawkesbury Sandstone		· · · · · · · · · · · · · · · · · · ·			2.92m: B5°, un, ro 3.06m: J10-90°, st, ro, } cln				PL(A) = 0.07
-	-			· · · · · · · · · · · · · · · · · · ·			3.23m: Ds 5mm 3.26m: Ds 40mm 3.68m: Ds 80mm				
49	-4						4.12m: B5°, pl, ro, st	с	97	72	PL(A) = 0.08
	-			X			4.72m: CORE LOSS:				
48	4.83 -5 5.02	SANDSTONE: medium grained, pale grey, low then medium to high strength, fresh, slightly fractured to		· · · · · · · · · · · · · · · · · · ·			110mm 4.83m: Ds 20mm				PL(A) = 0.19
47		unbroken, Hawkesbury Sandstone		· · · · · · · · · · · · · · · · · · ·							
4	- 6			· · · · · · · · · · · · · · · · · · ·							PL(A) = 0.91
46							6.63m: Ds 60mm				
	-7			· · · · · · · · · · · · · · · · · · ·			7.31m: CORE LOSS:	с	99	99	PL(A) = 1
45	-			· · · · · · · · · · · · · · · · · · ·			20mm 7.33m: Ds 10mm				
	-8										PL(A) = 0.81
44							8.85m: CORE LOSS:				
4	-9						30mm		00		PL(A) = 0.97
43								С	99	99	
Ľ								1	1	1	

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 2.6m, HQ to 2.75m

TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well

A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample P L(D) Point load axial test (s(50) (MPa) BLK Block sample U, Tube sample (mm dia.) C Core drilling W Vater sample p Pocket penetrometer (kPa)	10
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample Water level V Shear vane (kPa)	water

SURFACE LEVEL: 52.9 AHD **EASTING:** 337054.9 **NORTHING:** 6245642.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 2 OF 2

		Description	Degree of Weathering ≳ ≩ ≩ § ∞ ∰	ы	Rock Strength ត្រ	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
Ч	Depth (m)	of	Weathering	iraph Log	Very Low Very Low Medium Nedrium Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
	. ,		KW H W W K S W W W W W W W W W W W W W W W W W W W	0	Ex Low Very Very Very Ex High		S - Shear F - Fault	Ļ	ပိမ္ရွိ	Ж,	Comments
	- 11	SANDSTONE: medium grained, pale grey, low then medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued)					11.12m: B0°, pl, ro, cln	с	99	99	PL(A) = 1 PL(A) = 1.1
41	11.89 - 12						11.83m: CORE LOSS: 60mm 12.14m: B0°, pl, ro, cln				PL(A) = 1.2
40	- 13						12.89m: B0°, pl, ro, cly vn 13.48m: B0°, pl, ro, cly vn	с	98	98	PL(A) = 0.83
39	- 14			· · · · · · · · · · · · · · · · · · ·							PL(A) = 0.75
38	- 15						15.13m: Ds 30mm 15.45m: Ds 10mm	с	100	98	PL(A) = 1.1 PL(A) = 0.15
37	- 16						15.98m: B0-10°, un, sm				PL(A) = 1.2
	16.33	Bore discontinued at 16.33m Target depth reached									
	- 17										
35	- 18										
33 34 34	-19										

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 2.6m, HQ to 2.75m

TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well

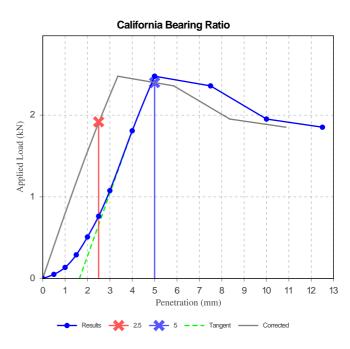
	SAN	IPLIN	3 & IN SITU TESTING	LEGI	END						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		_	_	_	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					artner	
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1.				aruner	5
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1.					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	S I Envi	ronmer	nt Groundwa	ter

Appendix E

Results of Laboratory Testing – Physical Properties

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648A
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 18/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH601 (2-3.8m)
Material:	SAND: fine to medium, yellow-brown, trace silt

California Bearing Ratio (AS 1289 6.1.1 & 2	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	15		
Method of Compactive Effort	Star	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 & :	2.1.1
Method used to Determine Plasticity	Visual As	sessm	ent
Maximum Dry Density (t/m ³)	1.67		
Optimum Moisture Content (%)	12.0		
Laboratory Density Ratio (%)	100.0		
Laboratory Moisture Ratio (%)	95.0		
Dry Density after Soaking (t/m ³)	1.68		
Field Moisture Content (%)	6.5		
Moisture Content at Placement (%)	11.5		
Moisture Content Top 30mm (%)	17.1		
Moisture Content Rest of Sample (%)	17.0		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	72.1		_
Swell (%)	0.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		


Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

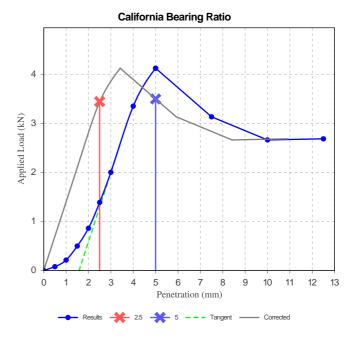
Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648B
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 18/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH605 (0.4-1.0m)
Material:	FILL/Gravelly SAND and SAND

California Bearing Ratio (AS 1289 6.1.1 & 2	2.1.1)	Min	Max
CBR taken at	2.5 mm		
CBR %	25		
Method of Compactive Effort	Star	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	Visual As	sessm	ent
Maximum Dry Density (t/m ³)	1.76		
Optimum Moisture Content (%)	13.5		
Laboratory Density Ratio (%)	100.5		
Laboratory Moisture Ratio (%)	95.0		
Dry Density after Soaking (t/m ³)	1.77		
Field Moisture Content (%)	13.9		
Moisture Content at Placement (%)	12.8		
Moisture Content Top 30mm (%)	15.2		
Moisture Content Rest of Sample (%)	14.4		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	72		
Swell (%)	-0.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	1.8		

Douglas Partners Geotechnics | Environment | Groundwater

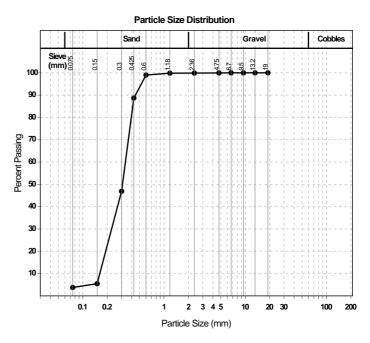

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648C
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 17/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH606 (1.5-3m)
Material:	SAND: fine to medium, brown, trace clay

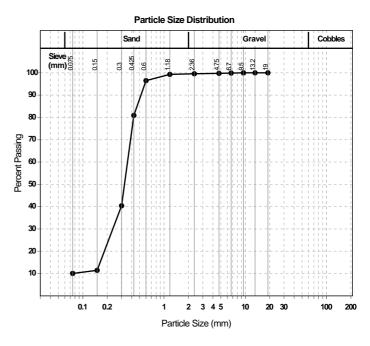

Particle Size Dist	ribution (AS1289 3.6.1)	
Sieve	Passed %	Passing Limits
19 mm	100	
13.2 mm	100	
9.5 mm	100	
6.7 mm	100	
4.75 mm	100	
2.36 mm	100	
1.18 mm	100	
0.6 mm	99	
0.425 mm	89	
0.3 mm	47	
0.15 mm	5	
0.075 mm	4	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648D
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 17/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH607 (1.5-3.8m)
Material:	SAND: fine to medium, dark brown, with clay

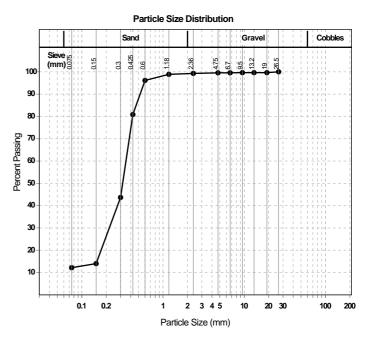

Particle Size Dist	ribution (AS1289 3.6.1)	
Sieve	Passed %	Passing Limits
19 mm	100	
13.2 mm	100	
9.5 mm	100	
6.7 mm	100	
4.75 mm	100	
2.36 mm	100	
1.18 mm	99	
0.6 mm	96	
0.425 mm	81	
0.3 mm	40	
0.15 mm	11	
0.075 mm	10	

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648E
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 17/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH608 (1.5-2.5m)
Material:	SAND: fine to medium, yellow-brown, with clay


Particle Size Distribution	on (AS1289 3.6.1)	
Sieve	Passed %	Passing Limits
26.5 mm	100	
19 mm	100	
13.2 mm	100	
9.5 mm	100	
6.7 mm	100	
4.75 mm	100	
2.36 mm	99	
1.18 mm	99	
0.6 mm	96	
0.425 mm	81	
0.3 mm	44	
0.15 mm	14	
0.075 mm	12	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648F
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 16/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH603 (1.4-1.5m)
Material:	Clayey SAND: fine to medium, orange-brown

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max	
Sample History	Oven Dried			
Preparation Method	Dry Sieve		_	
Liquid Limit (%)	20			
Plastic Limit (%)	17			
Plasticity Index (%)	3			
Moisture Content (AS 1289 2.1.1)				
Moisture Content (%)			7.2	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648G
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 17/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH605 (2.0-2.45m)
Material:	Clayey SAND: fine to medium, orange-brown

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max	
Sample History	Oven Dried			
Preparation Method	Dry Sieve		_	
Liquid Limit (%)	21			
Plastic Limit (%)	15			
Plasticity Index (%)	6			
Moisture Content (AS 1289 2.1.1)				
Moisture Content (%)			18.4	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Report Number:	72505.18-1
Issue Number:	1
Date Issued:	23/09/2020
Client:	LendLease Building Pty Limited
	Level 14, Tower Three, International Towers Sydney, BARANGAROO NSW 2000
Contact:	Mark Elliott
Project Number:	72505.18
Project Name:	SCH Stage 1 / CCCC Project
Project Location:	High Street and Hospital Road, Randwick
Work Request:	6648
Sample Number:	SY-6648H
Date Sampled:	02/09/2020
Dates Tested:	02/09/2020 - 16/09/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	BH607 (1.9-2.0m)
Material:	SAND: fine to medium, dark brown, with clay

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)			Max	
Sample History	Oven Dried			
Preparation Method	Dry Sieve		_	
Liquid Limit (%)	19			
Plastic Limit (%)	16			
Plasticity Index (%)	3			
Moisture Content (AS 1289 2.1.1)				
Moisture Content (%)			7.8	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Appendix F

Results of Laboratory Testing – Chemical Properties

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 250249

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Peter Valenti
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.18, SCH Stage 1 / CCC Precinct
Number of Samples	4 SOIL
Date samples received	02/09/2020
Date completed instructions received	02/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	09/09/2020	
Date of Issue	08/09/2020	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Soil Aggressivity					
Our Reference		250249-1	250249-2	250249-3	250249-4
Your Reference	UNITS	BH601	BH605	BH606	BH607
Depth		3.5-3.6	2.5-2.6	2.5-2.95	2.5-2.95
Date Sampled		27/08/2020	25/08/2020	28/08/2020	31/08/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
pH 1:5 soil:water	pH Units	6.5	5.1	6.9	6.1
Electrical Conductivity 1:5 soil:water	μS/cm	31	27	27	35
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	20	32	29	42

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	CONTROL:	Soil Agg		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	100	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	106	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	84	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	113	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		7250	5.18	1		Suburb): -	Randwi	ck	-	То:	Envirolab Se	rvices Pty	'Ltd		
Project Name			Stage 1/CC	CC Proje	ct	Order N	lumber				12 Ashley Street, Chatswood, NSW 2067					
Project Mana	ger:						er:	Tim Mc	Grath		Attn: Aileen Hie					
Emails:			.valenti@c	louglasp	artners.co	<u>om.au</u>					Phone:	·				
Date Require			ard TAT 🗆	<u></u>				<u> </u>			Email: Ahie@envirolab.com.au					
Prior Storage	: Fridge	e/freeze	er	<u> </u>		Do samp	eles contai	n 'potentia	<u>'' HBM?</u>	No 🗆	(If YES, then har	ndle, transport an	d store in acc	cordance with FPM HAZID)		
and And And			pled	Sample Type	r Type					Analytes						
Sample ID	Depth Range	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Aggressivity (S04, CL-, pH, EC)		and the second se	1999. 1999. 1999.			-		Notes/preservation		
BH601	3.5-3.6	1	27.8.20	S	P	.x	*						2			
BH605	2.5-2.6	l	2.6.8.20	S	P	X	· · ·	1. P					ENVIROLAB	LawnCHast Colvic 12 Ashley St Chatswood NSW 2067		
BH606	2.5-2.95	3	28.8.20	S	Р	x			-				(kou)	Chatswood NSW 2067 Ph: (02) 9910 6200		
BH607	2.5-2.95	<u> </u>	31.8.20	S	P	x , .		and the second sec			· · ·		Job No:	250249		
. tu.					2	John Barry	میرنی یہ م	in the second second					Date Rece			
· .								· · · · · ·		·			Received-	50M 82		
÷:		-											Cooling: 10	Hendlert		
			·										Cocurity: (r	tect/Broken/None		
· .			, 1 , 1			,										
	·			<u>·</u>												
								· <u>· ;</u>						· · · · · · · · · · · · · · · · · · ·		
								i 1								
· · · ·	<i>,</i> ,	·		,	= -				· · · · ·					ʻ,		
PQL (S) mg/kg									· · · · · · · · · · · · · · · · · · ·			ANZEO	C PQLs	req'd for all water analyt		
PQL = practical Metals to Analys					to Laborator	y Method D	etection Li	imit			Lab Repor	rt/Reference				
Total number of				· <u> </u>	Reli	nquished	bv: Ti	m Mc	Transpo	orted to la	boratory by:					
Send Results to			uglas Partne	ers Ptv Lt				<u> </u>				Phone				
Signed:					Received		7551	IN	(. MA	alens	Dat	e & Time:	vah			

4.5.1

- -

Appendix G

Groundwater Well Logs

CLIENT:

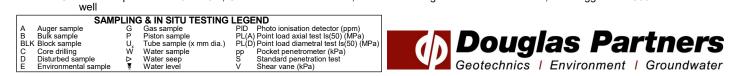
PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick


SURFACE LEVEL: 55 AHD **EASTING:** 337097.5 **NORTHING:** 6245571.8 **DIP/AZIMI ITH:** 90°/-- BORE No: BH602 PROJECT No: 72505.18 DATE: 19 & 24/08/2020 SHEET 1 OF 1

				DIF	P/AZI	MUTI	H: 90°/		SHEET 1 OF 1
		Description	. <u>ಲ</u>		Sam	pling &	& In Situ Testing		Well
님니	Depth (m)	of	Graphic Log	e	ţ	ple	Reculte &	Water	Construction
	(,	Strata	<u>م</u> _	Type	Depth	Sample	Results & Comments	>	Details
	0.09-	ASPHALTIC CONCRETE	<i>. О</i> .	E	0.1				Gatic cover
t t	0.28 -	│FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine ││ │igneous gravel, grey, medium, moist │			0.3 0.4				
ĒĒ	0.7 -	FILL/SAND: fine to medium, dark brown, with silt, moist	\bigotimes	E/D	0.6				Grout 0.0-1.0m
÷.		SAND SP: fine to medium, pale grey, moist, aeolian		E/D	0.8				
- 54	'				1.0				Bentonite 1.0-1.5m
ĒĒ									
ł ł									Blank pipe
23	2				2.0				
	2.2			s	2.0		4,3,5 N = 8		
ĒĒ		SAND SP: fine to medium, orange-brown, apparently cemented, iron indurated, ("coffee rock"), aeolian			2.45 2.5		N - 0		Slotted PVC
ÈÈ	2.6 -	SAND SP: fine to medium, yellow-brown, moist, aeolian			2.6				Slotted PVC Screen 1.5-3.34m Gravel 1.5-3.35m Gravel 1
-12-1	3			D	2.8 3.0				-3 -3 - 0
ĒĒ	3.2 -	Below 3.1m: becoming wet	· · · · · ·	S	3.27		5,25/125 refusal		
	3.35 -	SANDSTONE: medium grained, pale yellow-brown, apparently very low to low strength, Hawkesbury Sandstone			-				End cap BC P C
	1	Bore discontinued at 3.35m							- 4
- <u>-</u>	•	Target depth reached							-
ĒĒ									
ł ł									-
- 22- 4	5								-5
Ē									
ĒĒ									
ĒĒ									
-6(6								- 6
ĒĒ									
È È									
ĒĒ									
-8	7								7
ţţ									-
ĒĒ									
ŧ ŧ									
4-	3								-8
ţţ									
Ē									[
-46-6	9								-9
ĒĒ									
									· ·

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH
 CASING:
 None

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 3.35m
 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Bulk sample taken at 0.7-1.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121809 installed in

CLIENT:

PROJECT:

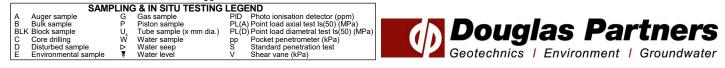
LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD **EASTING:** 337109.8 **NORTHING:** 6245649.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 1 OF 2


			Dir			H: 90°/		SHEET 1 OF 2
	Description	<u>.0</u>		Sam	pling &	& In Situ Testing		Well
Depth (m)	of	Graphic Log	e	th	ple	Poculto &	Water	Construction
	Strata	<u>م</u> _	Type	Depth	Sample	Results & Comments	>	Details
- 0.1 ⁻		j. O.	E/D	0.1				Gatic cover
0.24	│ \FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine │ │ │ \igneous gravel, grey, medium, moist │ │			0.3 0.4 0.5				
	FILL/Gravelly SAND: medium, brown, subangular, fine igneous gravel, moist Between 0.4-0.55m: large brick fragment	\bigotimes	E/D	0.9				
[⁴⁵] 1.3	FILL/SAND: fine to medium, brown, trace subrounded,	\bigotimes	L/D	1.1				Backfill 0.0-2.3m
	5 \fragment, moist		_E	1.4 1.5 1.6				-2
2	SAND SP: fine to medium, pale grey, moist, aeolian			2.0				2
23	plasticity, moist, loose, residual Below 2.2m: with ironstone bands		S			1,3,2 N = 5		
2.5	Sandy CLAY CI: low to medium plasticity, pale grey,	/.,/. ././		2.45 2.5 2.6				
3	w~PL, residual (Extremely weathered sandstone)	·/·/·	S	3.0		7,25/30		Bentonite 2.3-3.3m
3.18	3 SANDSTONE: medium to coarse grained, pale grey and red-brown, low to high strength, moderately and highly	<u>/ . / .</u>	5	3.18 3.3		refusal PL(A) = 0.23		
	weathered, slightly fractured to unbroken, Hawkesbury Sandstone							
4		· · · · · · · · · · · · · · · · · · ·						Blank pipe 0 0.1-3.8m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		· · · · · · · · · · · · · · · · · · ·		4.2		PL(A) = 0.94		
		· · · · · · · · · · · · · · · · · · ·	С					
5 4.94	4	<u> </u>		5.0		PL(A) = 1.3		
 		· · · · · · · · · · · · · · · · · · ·						
5.75	5							
6	SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone			5.84 6.0		PL(A) = 0.76		
-64-								
		· · · · · · · · · · ·						
				7.0		PL(A) = 0.84		
			С					
8				8.0		PL(A) = 0.84		
41								
		· · · · · · · · · · · · · · · · · · ·		8.85				
9				9.0		PL(A) = 1.3		
			С					
				10.0		DI (A) - 1 3		Gravel 3.3-3.8m
	I	miii		_10.0_		PL(A) = 1.3	1	

 RIG: Vac Truck, Hand Tools & Bobcat
 DRILLER: VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

 REMARKS:
 *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119606 installed in well

CLIENT:

PROJECT:

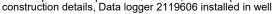
LOCATION:

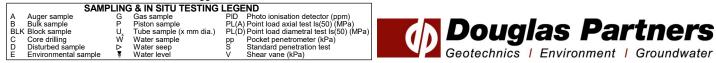
Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD EASTING: 337109.8 NORTHING: 6245649.5 DIP/AZIMUTH: 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 2 OF 2


strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued) Between 10.7-12.17: cross bedded at 0-10°	Well Construction Details Slotted PVC Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" 11 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Co
SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued) SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued) Between 10.7-12.17: cross bedded at 0-10° C 11.0 PL(A) = 1.6	Stotted PVC Clean Source screen 3.8-16.27m *O *O *O 11 *O *O *O *O 11 *O *O *O *O *O 10 *O *O *O *O *O *O 11 *O <
SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued) SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued) Between 10.7-12.17: cross bedded at 0-10° C 11.0 PL(A) = 1.6	screen 3.8-16.27m
	[[C] = [C]
Image: Second second	
Image: Problem 13.9-15.4m; cross bedded at 0-10° Image: Problem 13.9-15.4m; cross bedded at 0-10° Image: Problem 14.0 PL(A) = 1.4 Image: Problem 13.9-15.4m; cross bedded at 0-10° Image: Problem 14.0 PL(A) = 1.4 Image: Problem 14.0	14 14 14 14 14 14 14 14 14 14
-15 14.83 -9 15.0 C C	
16.28 Bore discontinued at 16.28m 16.28	16
Target depth reached	17
	18
	19


 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

 REMARKS:
 *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for

SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 1 OF 2

		Description	0		San	npling &	& In Situ Testing	Τ	Well
Dep		of	Graphic Log	-				Water	Construction
- (m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Š	Details
	0.06 -					Ň		-	Gatic cover
	0.2 -	ASPHALTIC CONCRETE		E/D*	0.1 0.2 0.4				Grout 0.0-1.0m Bentonite 0.15-0.35m
	0.6-	FILL/ GRAVEL: medium, yellow-brown, sandstone, with clay, sand, crushed sandstone, dry	\bigotimes	E/D	0.5				Blank pipe
-1 		FILL/ SAND: fine to medium, pale grey, dry		s	1.0		3,4,4 N = 8		
	1.4 -	SAND SP: fine to medium, brown, dry, loose, aeolian			1.45				Slotted PVC
-2		Below 1.8m: moist			1.9 2.0				. screen 0.5-3.0m / 0.1 - 0 -2 Gravel 0.5-3.0m 0.1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
-		Below 2.5m: medium dense		s	2.5		5,7,9 N = 16		
-3 - -	3.1 -	SANDSTONE: medium to coarse grained, yellow-brown, very low to low strength, Hawkesbury		-	2.95				-3 End cap
Ē	3.6	Sandstone SANDSTONE: medium to coarse grained, pale grey		:	3.6		PL(A) = 0.14		Bentonite 3.0-4.0m
- 4		with some pale orange staining, low then medium strength, slightly weathered, slightly fractured, Hawkesbury Sandstone		· • • • •	4.0		PL(A) = 0.23		-4
- 5				С	5.1		PL(A) = 0.61		-5
-6 - 6	6.25 -			•	5.8 6.0		PL(A) = 0.68		6
		SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone		С	7.0		PL(A) = 0.46		-7
- 8				· · · · · ·	8.0		PL(A) = 0.76		-8
- - - - - - - - - - - - - - - - - - -				c	- 8.8 9.0		PL(A) = 0.68		-9
-					_10.0_		PL(A) = 0.52		

RIG: Bobcat

CLIENT:

PROJECT:

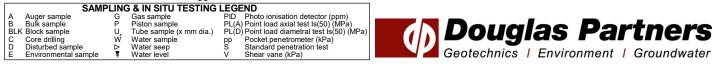
LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE


LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 2 OF 2

Π		Description				Sam	N prila	& In Situ Testing		Well	
ᆋ	Depth (m)	Description of	Graphic	g	¢,				Water	Constructior	۱
ľ	(m)	Strata	Gra	<u> </u>	Type	Depth	Sample	Results & Comments	Ň	Details	•
41 42	- 11	SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>			С	11.0	S	PL(A) = 0.45		Backfill 4.0-16.19m	-
40	-12					11.8 12.0		PL(A) = 0.88		- 12	
30	-13				С	13.0		PL(A) = 1		- 13	
38	- 14					14.0		PL(A) = 0.72		- 14	
37	- 15				с	15.0		PL(A) = 0.64		- 15	
- 98	- 16					16.05		PL(A) = 0.08		- 16	
	10.19	Bore discontinued at 16.19m Target depth reached	<u>[:</u>			-16.19-					
35	- 17									- 17	
34	- 18									- 18	
33	- 19									- 19	

RIG: Bobcat

CLIENT:

PROJECT:

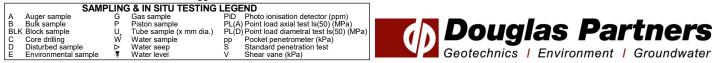
LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE


LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

SURFACE LEVEL: 52.9 AHD **EASTING:** 337054.9 **NORTHING:** 6245642.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 1 OF 2

					1					
	Donth	ь	Description	hic				& In Situ Testing	- La	Well
ᆋ	Depth (m)		of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
			Strata	G	L L	Ğ	Sar	Comments		Details
	0.0	05 -).2 -	ASPHALTIC CONCRETE	$\dot{\mathcal{O}}$	E/D	0.1				Gatic cover
	0).5 -	FILL/ROADBASE: GRAVEL, coarse, dark grey, igneous, subangular-subrounded, dry		_E/D_	0.4				
52	.1		FILL/ GRAVEL: medium, yellow-brown, sandstone, with clay, sand, crushed sandstone, dry		E/D*	0.8				Backfill 0.1-1.75m
	I		FILL/SAND: fine to medium, brown, trace silt, and fine subangular igneous gravel, dry		s			1,1,1 N = 2		
	1.	1.5 -	SAND SP: fine to medium, yellow-brown, with clay, moist, loose, aeolian	<u> </u>		1.45				Backfill 0.1-1.75m
- 12	2				E/D	2.0				-2
	2	2.5 -	SANDSTONE: medium to coarse grained, pale yellow		s	2.5		25/90 refusal		Bentonite 0.15-0.35m
20	0		and red, very low then low strength, highly weathered, slightly fractured, Hawkesbury Sandstone			2.59 2.75 2.8		PL(A) = 0.07		
	-3									- 3 Blank pipe + 0 + 0 - 0.1-2.75m + 0 + 0 - 0.1 - 2.75m + 0 + 0 - 0.1 - 2.75m + 0 + 0 -
-64-	4					4.0		PL(A) = 0.08		
					С					
	4.8	83		>>>						
	5 5.0	02 -	SANDSTONE: medium grained, pale grey, low then medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone			5.3		PL(A) = 0.19		
47						5.76				
	6					6.0		PL(A) = 0.91		
- 46	7					7.0		PL(A) = 1		
					С					
42	8					8.0		PL(A) = 0.81		
										-8 -9 Gravel 0.5-3.0m -9 -9 -9 -9 -9 -9 -9 -9 -9 -9
						8.85				
44	9					9.0		PL(A) = 0.97		
					С					Gravel 0.5-3.0m
43						10.0_		PL(A) = 1		Slotted PVC - 00 - 00 - 00 screen 0.5-3.0m 0 - 00 - 00 0 - 00 - 00 - 00 0 - 00 - 00 - 00 0 - 00 - 00

RIG: Bobcat

CLIENT:

PROJECT:

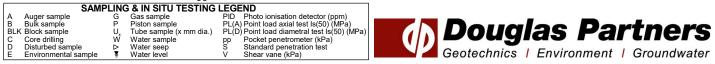
LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE


LOGGED: TM

CASING: HW to 2.6m, HQ to 2.75m

TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well

SURFACE LEVEL: 52.9 AHD **EASTING:** 337054.9 **NORTHING:** 6245642.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 2 OF 2

П		Description			Sam	nolina 8	& In Situ Testing		10/-11	
뉟	Depth	Description of	phic					Water	Well Construction	n
	(m)	Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Ň	Details	
42	- 11	SANDSTONE: medium grained, pale grey, low then medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	11.1	<u></u>	PL(A) = 1.1		-11	2000-000-000-000-000 1111111111111111111
41	11.89 - 12				11.83 12.0		PL(A) = 1.2		-12	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
40	- 13			С	13.0		PL(A) = 0.83		-13	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
30	- 14			· · · · · ·	14.0		PL(A) = 0.75		- 14	0,00,00,00,00,00,00,00,00,00,00,00,00,0
38	- 15			с	14.65 15.0 15.2		PL(A) = 1.1 PL(A) = 0.15		- 15	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
37	- 16 16.33 -	Bore discontinued at 16.33m Target depth reached			16.0 -16.33-		PL(A) = 1.2		- 16 - End cap	000000 000000 111111111111111111111111
39	- 17								- 17	
35	- 18								- 18	
34	- 19								- 19	
33									-	

RIG: Bobcat

CLIENT:

PROJECT:

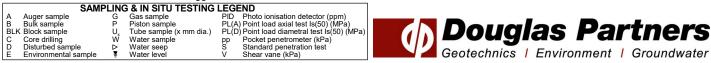
LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

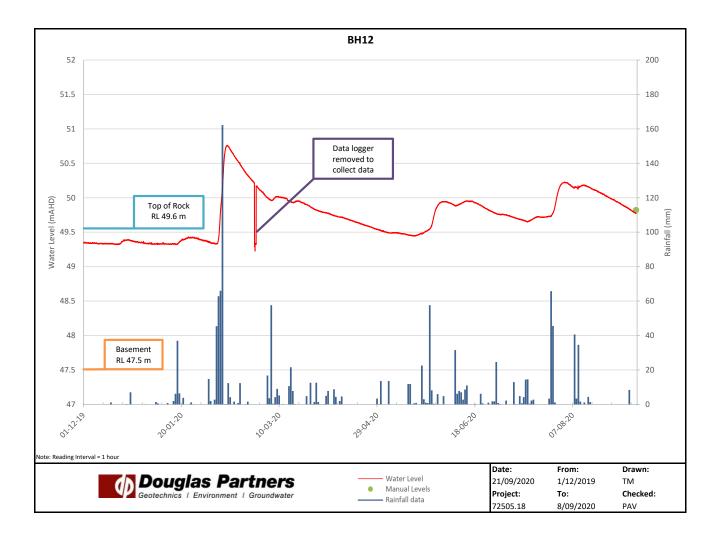
High Street and Hospital Road, Randwick

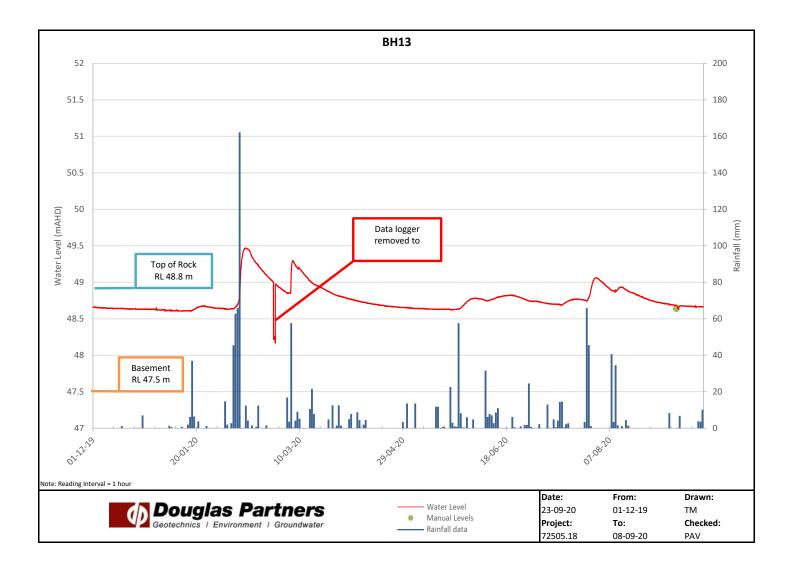
DRILLER: JE

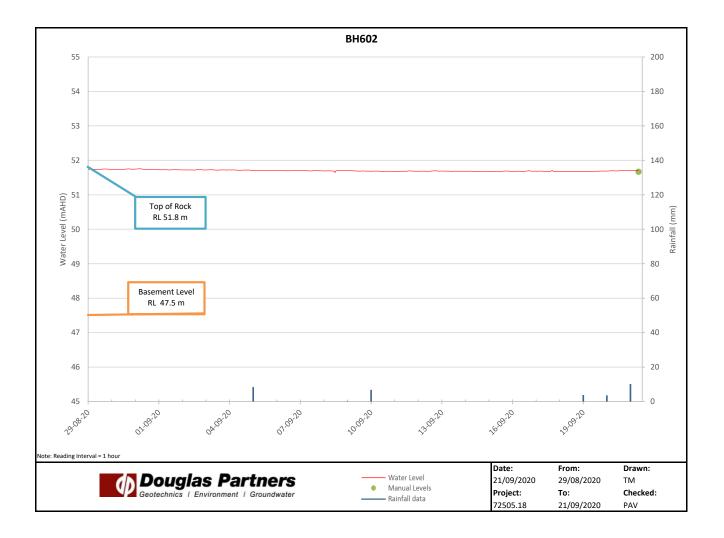

LOGGED: TM

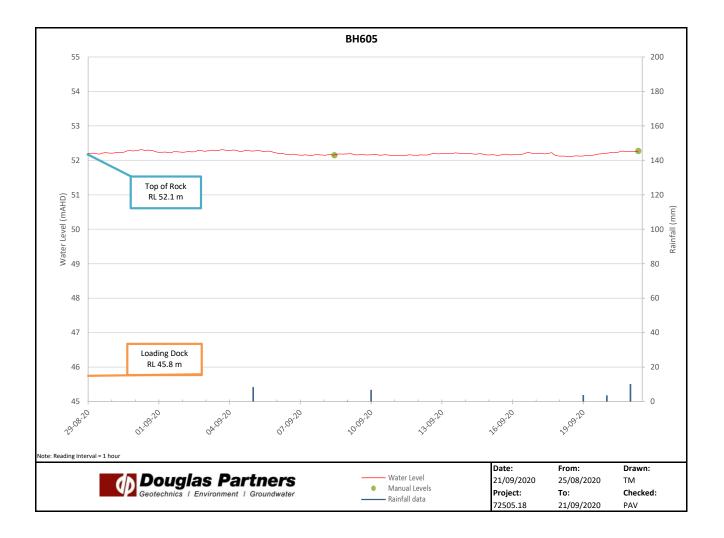
CASING: HW to 2.6m, HQ to 2.75m

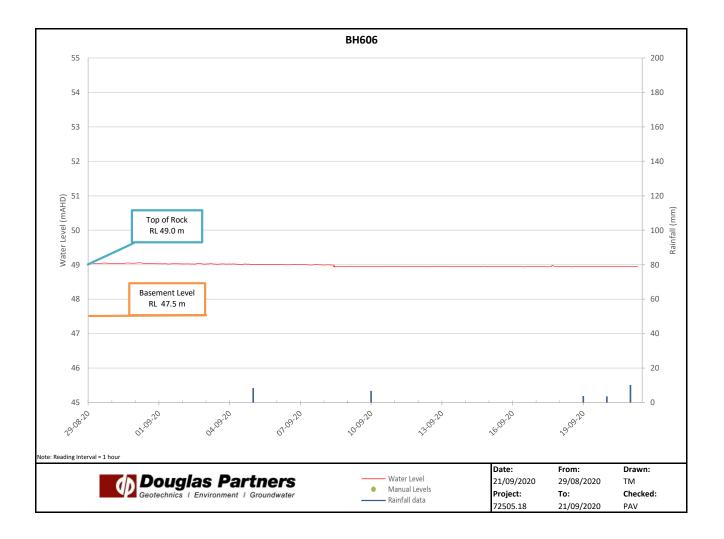
TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m

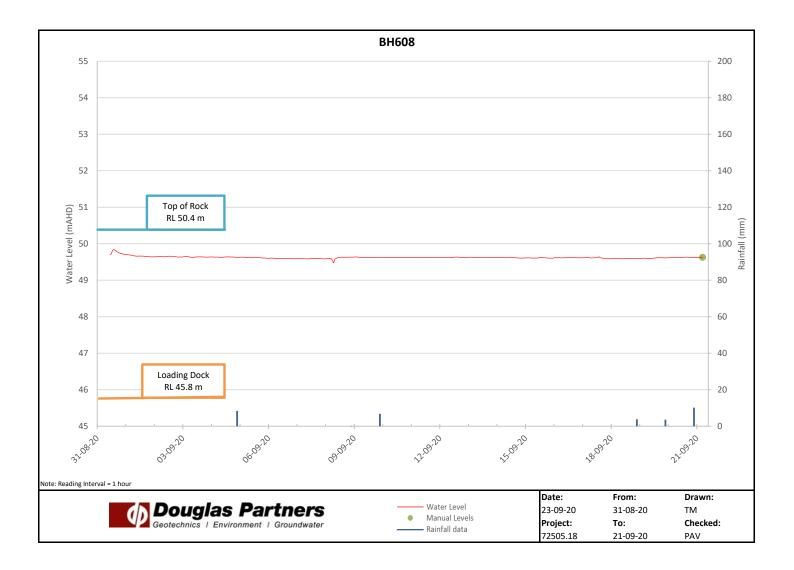

WATER OBSERVATIONS: No free groundwater observed whilst augering


REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well




Appendix H


Results of Groundwater Monitoring



Appendix I

Results of Permeability Tests

Permeability Testing - Falling Head Test Report

Client:	Lendleas	e Building Pty	Ltd			Project No:	72505.18	
Project:	SCH Sta	ge 1 / CCCC P	roject		Test date:		31-Aug-20	
Location:	High Stre	et and Hospita	al Road, Ra	Indwick		Tested by:	TM	
Test Location Description: Material type:	n Standpip	e in borehole			Test No. Easting: Northing Surface Level:			m m m AHD
Details of We	ell Installatio	on						
Well casing di	iameter (2r)		110	mm	Depth	to water before test	3.3	m
Well screen d	liameter (2R))	110	mm	Depth	to water at start of test	1.95	m
Length of well	l screen (Le)		1.84	m				
Comments:	Effective	screen length	reduced du	ie to standing	g water le	vel		
Test Results								
Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho					
0	1.95	-1.35	1.000					
0.10	2.15	-1.15	0.852	4				
0.20	2.22	-1.08	0.800	4				
0.30	2.33	-0.97	0.719					
0.50	2.49	-0.81	0.600	1.00				
1.00	2.71	-0.59	0.437	- 1.00				
2.00	2.9	-0.40	0.296	_				
5.00	3.07	-0.23	0.170	Head Ratio	.10	1.00 Time (minutes To = 1.02 min 61.2 sec	S	10.00
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated (where r = r R = radius Le = length	adius of c of well sc n of well s	asing reen	change	
Hydraulic Conductivity k =					E-05 973	m/sec cm/hour		

Permeability Testing - Rising Head Test Report

Client:		e Building Pty			Project No: 72505.18
Project:		ge 1 / CCCC F			Test date: 25-Aug-20
Location:	High Stre	et and Hospita	al Road, Ra	Indwick	Tested by: JJH
Test Location Description: Material type:	scription: Standpipe in borehole				Test No.BH605Easting:337109.8mNorthing6245649.5mSurface Level:55.3m AHD
Details of We	ell Installatio	on			
Well casing d	iameter (2r)		76	mm	Depth to water before test m
Well screen d)	76	mm	Depth to water at start of test 14.4 m
Length of well	l screen (Le)		12.5	m	
Comments:	Effective	screen length	reduced du	le to standing	g water level
Test Results					-
Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho		
0	14.4	14.40	1.000		
5.0	13.43	13.43	0.933		
10	12.54	12.54	0.871	1	
20	10.95	10.95	0.760		
30.0	9.62	9.62	0.668	1.00	A
60	6.69	6.69	0.465	- 1.00	
120	4.81	4.81	0.334	_	
180.0	4.22	4.22	0.293	4	
300	3.72	3.72	0.258	4	
				2	
				- le	
				atio	
				Head Ratio dh/ho	
				Ťe	
				0.10	
					0.10 1.00 10.00 100.00
					Time (minutes)
					To = 95 mins 5700 secs
Theory:	-	ead Permeability Le/R)]/2Le To	v calculated	where r = R = radius Le = lengt	n by Hvorslev radius of casing of well screen n of well screen saken to rise or fall to 37% of initial change
Hydraulic Conductivity k =					E-08 m/sec 021 cm/hour

Permeability Testing - Falling Head Test Report

Client:	Lendleas	e Building Pty	Ltd			Project No: 72505.18			
Project:	SCH Sta	ge 1 / CCCC F	Project			Test date:	31-Aug-20		
Location:		et and Hospita	•	ndwick		Tested by:	ТМ		
Location.	riigii olie		ai ittoau, itta	HUWICK		Tested by.			
Test Locatio						Test No.	BH606		
Description:		e in borehole				Easting:	337045.4	m	
Material type:	Sand					Northing	6245584.9	m	
						Surface Level:	52.1	m AHD	
Details of We	ell Installatio	on							
Well casing d			110	mm	Depth	to water before test	2.9	m	
Well screen d	liameter (2R))	110	mm	Depth	to water at start of test	1.95	m	
Length of wel	l screen (Le)		2.5	m					
Comments:	Effective	screen length	reduced du	e to standir	ng water le	evel			
Test Results									
Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho						
0	1.7	-1.20	1.263						
0.10	1.9	-1.00	1.053						
0.20	2.04	-0.86	0.905						
0.30	2.16	-0.74	0.779						
0.50	2.33	-0.57	0.600	1.0	0				
1.00	2.54	-0.36	0.379	- 1.0					
2.00	2.65	-0.25	0.263	_					
5.00	2.71	-0.19	0.200	_					
10	2.74	-0.16	0.168	_					
				g					
				Head Ratio dh/ho					
				ţi					
				I Ra					
				leac					
				_					
				_					
				-					
				-					
				0.1		1.00			
				-	0.10	1.00		10.00	
				-		Time (minutes	5)		
				1					
				1					
				_		To = 1.01 mir			
						60.6 sec	S		
Theory:	Falling He	ad Permeability	calculated u	using equation	on by Hvor	slev			
-	-	[Le/R)]/2Le To			radius of o				
		· · · -			s of well so	-			
					th of well s				
				•		se or fall to 37% of initial	change		
Hydra	ulic Condu	ctivity	k =	35	3E-05	m/sec			
Hydraulic Conductivity k =									
			=	13	8.717	cm/hour			

Permeability Testing - Rising Head Test Report

Client:		e Building Pty		-	Project No:	72505.18 31-Aug-20	
Project:		ge 1 / CCCC F			Test date:		
Location:	High Stre	et and Hospita	al Road, Ra	Indwick	Tested by:	ТМ	
Test LocationDescription:Standpipe in boreholeMaterial type:Sandstone					Test No. Easting: Northing Surface Level:	BH608 337052.7 6245601.5 52.4	m m m AHD
Details of We	ell Installatio	on					
Well casing d			76	mm	Depth to water before test	3.15	m
Well screen d	· · ·		76	mm	Depth to water at start of test	10.39	m
Length of wel			13.33	m			
Comments:		screen length	reduced du	ie to standing	g water level		
Test Results				_			
Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho				
0	10.39	7.24	1.000	4			
10.0	8.46	5.31	0.733	4			
30	6.87	3.72	0.514	-			
60	5.72	2.57	0.355	-			
90.0	5.09	1.94	0.268	1.00	*		
120	4.66	1.51	0.209	-			
150 300.0	4.36 3.71	1.21 0.56	0.167	-			
				Head Ratio	D.10 1.00 10.00 Time (minutes) To = 45 min 2700 sect	5	1,000.00
Theory:	-	ead Permeability Le/R)]/2Le To	v calculated (where r = r R = radius Le = lengtl	n by Hvorslev radius of casing of well screen n of well screen aken to rise or fall to 37% of initial	change	
Hydraulic Conductivity k = =					E-07 m/sec 042 cm/hour		